Question

Standing waves on a 1.5-meter long string that is fixed at both ends are seen at...

Standing waves on a 1.5-meter long string that is fixed at both ends are seen at successive (that is, modes m and m + 1) frequencies of 38 Hz and 42 Hz respectively. The tension in the string is 720 N.

  1. What is the fundamental frequency of the standing wave? Hint: recall that every harmonic frequency of a standing wave is a multiple of the fundamental frequency.

  2. What is the speed of the wave in the string?

  3. What is the linear density (mass-to-length ratio) of the string?

Homework Answers

Answer #1

Here we apply concept of standing wave on string and formula for velocity of wave on string.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A standing wave is set up in a L=2.00m long string fixed at both ends. The...
A standing wave is set up in a L=2.00m long string fixed at both ends. The string vibrates in its 5th harmonic when driven by a frequency f=120Hz source. The mass of the string is m=3.5grams. Recall that 1kg = 1000grams. A. Find the linear mass density of the string B. What is the wavelength of the standing wave C. What is the wave speed D. What is the tension in the string E. what is the first harmonic frequency...
Two stretched strings on a musical instrument each are fixed at both of their ends. String...
Two stretched strings on a musical instrument each are fixed at both of their ends. String 1 is 0.600 m long, has a linear mass density of 2.00 ´ 10–3 kg/m, and is under a tension of 1.00 ´ 102 N. String 2 is 1.20 m long, has a linear mass density of 1.00 ´ 10–3 kg/m, and is under a tension of 2.00 ´ 102 N. (a) Find the speed of wave propagation on string 1 and on string...
A string that is fixed at both ends has a length of 2.79 m. When the...
A string that is fixed at both ends has a length of 2.79 m. When the string vibrates at a frequency of 85.7 Hz, a standing wave with five loops is formed. (a) What is the wavelength of the waves that travel on the string? (b) What is the speed of the waves? (c) What is the fundamental frequency of the string?
A thin taut string of mass 5.00 g is fixed at both ends and stretched such...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such that it has two adjacent harmonics of 525 Hz and 630 Hz. The speed of a traveling wave on the string is 168 m/s. (a) Determine which harmonic corresponds to the 630 Hz frequency. (b) Find the linear mass density of this string. (c) Find the tension in the string.
please provide the explanation towards the final answer. You were doing an experiment on standing waves...
please provide the explanation towards the final answer. You were doing an experiment on standing waves on a string of length 1 m, that is fixed at both ends. You measured the frequencies of two successive standing waves at 36 Hz and 48 Hz, respectively. i. Can you find the speed of the waves & the fundamental frequency? ii. If the string oscillates at the highest frequency plot the pattern of the standing waves.
A string with a mass density of 3.6 ? 10-3 kg/m is under a tension of...
A string with a mass density of 3.6 ? 10-3 kg/m is under a tension of 370 N and is fixed at both ends. One of its resonance frequencies is 720 Hz. The next higher resonance frequency is 840 Hz. (a) What is the fundamental frequency of this string? ______Hz (b) Which harmonics have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 720 Hz 840 Hz (c) What is the length of the...
To apply Problem-Solving Strategy 12.1 Standing waves and normal modes. A cellist tunes the C string...
To apply Problem-Solving Strategy 12.1 Standing waves and normal modes. A cellist tunes the C string of her instrument to a fundamental frequency of 65.4 Hz H z . The vibrating portion of the string is 0.600 m m long and has a mass of 14.4 g g . With what tension must she stretch that portion of the string? What percentage increase in tension is needed to increase the frequency from 65.4 Hz H z to 73.4 Hz H...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such that it has two adjacent harmonics of 525 Hz and 630 Hz. The speed of a traveling wave on the string is 168 m/s. PART A: Determine which harmonic corresponds to the 630 Hz frequency. PART B: Find the linear mass density of this string. Express your answer with the appropriate SI units. PART C: Find the tension in the string. Express your answer...
7a. Express the fundamental frequency of a piano wire fixed at both ends in terms of...
7a. Express the fundamental frequency of a piano wire fixed at both ends in terms of its tension FT, length L, radius r, and the 3D mass density ρ of the wire material. 7b. Given: radius r = 0.375 × 10-3 m, length L = 0.501 m, and ρsteel = 7.86 × 103 kg/m3. What is the tension required for a steel piano string tuned to middle C (f = 261.626 Hz)? 8.One of the harmonic frequencies of tube A...
The second harmonic standing wave on a particular string fixed at both ends is given by:...
The second harmonic standing wave on a particular string fixed at both ends is given by: y(x, t) = 0.01 sin(2π x) cos(200π t) (in SI units). a) Fill in the following information: λ2 = f2 = v = b) How long is the string, and what is its fundamental frequency? L =   f1 = c) This second harmonic wave has total energy E2. If the string is plucked so that has the first harmonic wave on it instead at...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT