Question

The emission wavelength of such a scintillator lies between 275 nm and 450 nm and the...

The emission wavelength of such a scintillator lies between 275 nm and 450 nm and the light yield per neutron is reported to be 20000 photons/MeV neutron energy. Now, you are asked to help design a new photodetector, which receives the light emitted from that scintillator.

What is the maximum kinetic energy of electrons emitted from the photo cathode, given the emission wavelength range of the scintillator?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The emission wavelength of such a scintillator lies between 275 nm and 450 nm and the...
The emission wavelength of such a scintillator lies between 275 nm and 450 nm and the light yield per neutron is reported to be 20000 photons/MeV neutron energy. Now, you are asked to help design a new photodetector, which receives the light emitted from that scintillator. What largest work function of a material used for a photo cathode would be acceptable that still allows detection of an emission originating from the scintillator?
The emission wavelength of such a scintillator1 lies between 275 nm and 450 nm and the...
The emission wavelength of such a scintillator1 lies between 275 nm and 450 nm and the light yield per neutron is reported to be 20000 photons/MeV neutron energy. Now, you are asked to help design a new photodetector, which receives the light emitted from that scintillator. How much charge is being generated per single neutron, assuming a 3 MeV neutron and a photon-to-electron conversion efficiency (quantum efficiency) of 15%? Would this charge be detectable if you use an Electrometer2 that...
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
The hydrogen atomic emission spectrum includes a UV line with a wavelength of 92.323 nm. Photons...
The hydrogen atomic emission spectrum includes a UV line with a wavelength of 92.323 nm. Photons of this wavelength are emitted when the electron transitions to nf = 1 as the final energy state. Show all steps and round answers to correct sig figs. a) Is this line associated with a transition between different excited states or between an excited state and the ground state? b) What is the energy of the emitted photon with wavelength 92.323 nm? c) What...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work function of Magnesium is 3.68 eV. (a) What is the maximum kinetic energy of the emitted electrons, in eV? (b)What is the maximum velocity of the emitted electrons, in m/s? (c) What is the stopping potential, in Volts, that results in no collected photoelectrons? (d) Light of wavelength 235 nm is now incident on lead (work function 5.40 eV). What is the maximum kinetic...
2a) When a metal surface is illuminated by light of wavelength 310 nm, the measured maximum...
2a) When a metal surface is illuminated by light of wavelength 310 nm, the measured maximum kinetic energy of the emitted electrons is 0.50 eV. Calculate the metal plate’s work function φ in units of eV. b) In the rest frame of an ejected electron from the photoelectric experiment in part a), an incident γ-ray with an energy of 0.25 MeV interacts with the electron. Following the collision, the γ-ray has a final energy of 0.1 MeV. Calculate the angle...
The hydrogen emission spectrum produces light at 430 nm (blue), 480 nm (blue-green) and 650 nm...
The hydrogen emission spectrum produces light at 430 nm (blue), 480 nm (blue-green) and 650 nm (red). Find the energy in Joules and then in eV for a photon at each of these wavelengths: 430 nm: 480 nm: 650 nm: A metal surface has a work function (W0) of 2.7 eV.  Of the three wavelengths of light in the hydrogen spectrum, which would be able to release electrons from the metal surface? Calculate the kinetic energy in eV if any, of...
When light with a wavelength of 258 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 258 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.02 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.
When light with a wavelength of 221 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 221 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.28 × 10−19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.
1. An ultraviolet light with wavelength 380 nm and intensity 1.00 W/m2 falling on 1.00 cm2...
1. An ultraviolet light with wavelength 380 nm and intensity 1.00 W/m2 falling on 1.00 cm2 area of Lithium surface. If 0.9 % of the incident photons produces photoelectrons, how many photons emitted per second. 2.Calculate maximum kinetic energy of ejected photoelectron when 320 nm light falls on Silver surface.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT