Question

The emission wavelength of such a scintillator1 lies between 275 nm and 450 nm and the...

The emission wavelength of such a scintillator1 lies between 275 nm and 450 nm and the light yield per neutron is reported to be 20000 photons/MeV neutron energy. Now, you are asked to help design a new photodetector, which receives the light emitted from that scintillator.

How much charge is being generated per single neutron, assuming a 3 MeV neutron and a photon-to-electron conversion efficiency (quantum efficiency) of 15%? Would this charge be detectable if you use an Electrometer2 that has a resolution limit of 10 fC? Hint: If that is not possible, you can build a device that performs electron multiplication, such as a Photomultiplier.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The emission wavelength of such a scintillator lies between 275 nm and 450 nm and the...
The emission wavelength of such a scintillator lies between 275 nm and 450 nm and the light yield per neutron is reported to be 20000 photons/MeV neutron energy. Now, you are asked to help design a new photodetector, which receives the light emitted from that scintillator. What is the maximum kinetic energy of electrons emitted from the photo cathode, given the emission wavelength range of the scintillator?
The emission wavelength of such a scintillator lies between 275 nm and 450 nm and the...
The emission wavelength of such a scintillator lies between 275 nm and 450 nm and the light yield per neutron is reported to be 20000 photons/MeV neutron energy. Now, you are asked to help design a new photodetector, which receives the light emitted from that scintillator. What largest work function of a material used for a photo cathode would be acceptable that still allows detection of an emission originating from the scintillator?
The hydrogen atomic emission spectrum includes a UV line with a wavelength of 92.323 nm. Photons...
The hydrogen atomic emission spectrum includes a UV line with a wavelength of 92.323 nm. Photons of this wavelength are emitted when the electron transitions to nf = 1 as the final energy state. Show all steps and round answers to correct sig figs. a) Is this line associated with a transition between different excited states or between an excited state and the ground state? b) What is the energy of the emitted photon with wavelength 92.323 nm? c) What...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT