Question

a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....

a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz)

b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J )

c) Light with a wavelength of 530 nm falls on a photoelectric surface that has a work function of 1.70 eV. What is the maximum kinetic energy (in eV) of any emitted photoelectrons? (3 digit answer)

d) Electrons are ejected from a photoelectric cell with a maximum kinetic energy of 1.20 eV. If the incident light has a wavelength of 410 nm, what is the work function (in eV) of the cell?(3 digit answer)

e) Electrons are ejected from a photoelectric surface with a maximum kinetic energy of 2.9 eV. If the photons of incident light of energy of 3.45 eV, what is the minimum frequency needed to cause photoelectron emission?  (format of a.b x 10cd Hz)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) A photoelectric surface has a work function of 2.75 eV. What is the minimum frequency...
a) A photoelectric surface has a work function of 2.75 eV. What is the minimum frequency of light that will cause photoelectron emission from this surface ? answer in the format of a.bc x 10de Hz b) A photoelectric cell is illuminated with white light (wavelengths from 400 nm to 700 nm). What is the maximum kinetic energy (in eV) of the electrons emitted by this surface if its work function is 2.30 eV ? 4 digit answer
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the threshold frequency of this surface? (format of a.bc x 10de Hz) b) What is the stopping voltage of an electron that has 5.40 x 10-19 J of kinetic energy? (3 digit answer) c) A photoelectric surface requires a light of maximum wavelength of 675 nm to cause electron emission. What is the work function (in eV) of this surface? (3 digit answer) d) A...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work function of Magnesium is 3.68 eV. (a) What is the maximum kinetic energy of the emitted electrons, in eV? (b)What is the maximum velocity of the emitted electrons, in m/s? (c) What is the stopping potential, in Volts, that results in no collected photoelectrons? (d) Light of wavelength 235 nm is now incident on lead (work function 5.40 eV). What is the maximum kinetic...
a) What is the energy of a photon (in eV) that has a wavelength of 466...
a) What is the energy of a photon (in eV) that has a wavelength of 466 nm? (3 digit answer) b) What is the energy (in eV) of a photon that has a wavelength of 460 nm? c) What is the wavelength of a photon that has 2.1 eV of kinetic energy? (format of a.b x 10-c m ) d) a photoelectric surface has a work function of 2.00 eV. What is the threshold frequency of this surface?  (format of a.bc...
In photoelectric effect, light photon is allowed to fall on a metal surface and a photoelectron...
In photoelectric effect, light photon is allowed to fall on a metal surface and a photoelectron is ejected with kinetic energy 2.6 eV. If the threshold frequency f0 = 2 x 10^14 Hz then calculate the frequency and energy of incident photon.
Consider a beam of light with a wavelength λ = 403-nm incident onto a metal surface,...
Consider a beam of light with a wavelength λ = 403-nm incident onto a metal surface, which can be Li, Be or Hg. The work functions of these metals are 2.30-eV, 3.90-eV and 4.50-eV respectively. For the metal that exhibits the photoelectric effect find the maximum kinetic energy of the photoelectrons.
a) In a particular photoelectric effect experiment, photons with an energy of 5.10 eV are incident...
a) In a particular photoelectric effect experiment, photons with an energy of 5.10 eV are incident on a metal surface, producing photoelectrons with a maximum kinetic energy of 3.20 eV. Calculate the work function of the metal. _______ eV b) In a particular photoelectric effect experiment, photons with an energy of 5.10 eV are incident on a metal surface, producing photoelectrons with a maximum kinetic energy of 3.20 eV. The photon energy is then adjusted to 6.40 eV. Calculate the...
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in...
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in a photoelectric experiment is observed to be 0.850 V. a) What is the work function φ of the metal? (eV) b) What is the maximum kinetic energy of the ejected electrons (in Joules)? c) What is the longest wavelength light that will still allow electrons to escape the metal?(nm)
When light with a wavelength of 258 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 258 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.02 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.
When light with a wavelength of 221 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 221 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.28 × 10−19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT