Question

1. An ultraviolet light with wavelength 380 nm and intensity 1.00 W/m2 falling on 1.00 cm2 area of Lithium surface. If 0.9 % of the incident photons produces photoelectrons, how many photons emitted per second.

2.Calculate maximum kinetic energy of ejected photoelectron when 320 nm light falls on Silver surface.

Answer #1

Light of wavelength 400 nm and intensity 10-2 W/m2 is incident
on a detector surface. The area of the detector is 86 cm2. What is
the rate of photons, incident on the detector?

When ultraviolet light with a wavelength of 400 nm falls on a
certain metal surface, the maximum kinetic energy of the emitted
photoelectrons is 1.10 eV .
What is the maximum kinetic energy K0 of the
photoelectrons when light of wavelength 330 nm falls on the same
surface?
Use h =
6.63×10?34J?s for Planck's constant and
c =
3.00×108m/s for the speed of light and
express your answer in electron volts.

When ultraviolet light with a wavelength of 400 nm falls on a
certain metal surface, the maximum kinetic energy of the emitted
photoelectrons is 1.10 eV .
What is the maximum kinetic energy K_0 of the photoelectrons
when light of wavelength 340 nm falls on the same surface?
Use h = 6.63×10−34 J⋅s for Planck's constant and c =
3.00×108 m/s for the speed of light and express your
answer in electron volts.
View Available Hint(s)
K_0 =
eV

a) A photon of wavelength 43 nm is incident upon a metal in a
photoelectric apparatus. A stopping voltage of 21 V was obtained.
What is the threshold frequency of the metal? (format of a.b x
10cdHz)
b) Light with a frequency of 5.00 x 1014 Hz
illuminates a photoelectric surface that has a work function of
2.10 x 10-19 J. What is the maximum kinetic energy of
the emitted photoelectrons? (format of a.bc x 10-de J
)
c) Light...

Calculate maximum kinetic energy of ejected photoelectron when
320 nm light falls on Silver surface.

When ultraviolet light with a wavelength of 400 nmfalls on a
certain metal surface, the maximum kinetic energy of the emitted
photoelectrons is 1.10 eV .
What is the maximum kinetic energy K0 of the
photoelectrons when light of wavelength 350 nm falls on the same
surface?
Use h = 6.63×10?34 J?s for Planck's constant
and c = 3.00×108 m/s for the speed of light and
express your answer in electron volts.

The work function for aluminum is 4.2 eV. (a) What is the cutoff
frequency of light
incident on an aluminum target that releases photoelectrons from
its surface? (b) Find the
corresponding cutoff wavelength. (c) If photons of energy 5.0 eV
are incident on an
aluminum target what is the maximum kinetic energy of the ejected
photoelectrons? (d)
what is the maximum velocity of a photoelectron traveling from the
anode to the cathode
of a photocell? (d) If a blue beam...

When monochromatic light of an unknown wavelength falls on a
sample of silver, a minimum potential of 2.50 V is required to stop
all of the ejected photoelectrons. Determine the (a) maximum
kinetic energy and (b) maximum speed of the ejected photoelectrons.
(c) Determine the wavelength in nm of the incident light. (The work
function for silver is 4.73 eV.)

When monochromatic light of an unknown wavelength falls on a
sample of silver, a minimum potential of 2.50 V is required to stop
all of the ejected photoelectrons. Determine the (a) maximum
kinetic energy and (b) maximum speed of the ejected photoelectrons.
(c) Determine the wavelength in nm of the incident light. (The work
function for silver is 4.73 eV.)

The work function for aluminum is 4.2 eV. (a) What is the cutoff
frequency of light
incident on an aluminum target that releases photoelectrons from
its surface? (b) Find the
corresponding cutoff wavelength. (c) If photons of energy 5.5 eV
are incident on an
aluminum target what is the maximum kinetic energy of the ejected
photoelectrons? (d)
what is the maximum velocity of a photoelectron traveling from the
anode to the cathode
of a photocell? (d) If a red laser...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 24 minutes ago

asked 41 minutes ago

asked 43 minutes ago

asked 47 minutes ago

asked 52 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago