Question

Derive the expression for work done by expanding a van der Waal's system. Express the relationship:...

Derive the expression for work done by expanding a van der Waal's system. Express the relationship:

a) in terms of volume

b) in terms of pressure

c) Calculate the work done by isothermal expansion of a van der Waals gas from 1 L to 2 L, and compare the result to the work done in an ideal system. Comment on why the values are different.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Derive an expression for the isothermal reversible expansion of a van der Waals gas. Account physically...
Derive an expression for the isothermal reversible expansion of a van der Waals gas. Account physically for the way in which the coefficients a and b appear in the expression. Using Maple, plot the expression along with that for an ideal gas. For the van der Waals gas, use a case first where a = 0 and b = 5.11 x 10-2 mol-1 and where a = 4.2 L2 atm mol-2 and b = 0. Take Vi = 1.0 L,...
7. 1.55 moles of Argon gas undergo an isothermal reversible expansion from an initial volume of...
7. 1.55 moles of Argon gas undergo an isothermal reversible expansion from an initial volume of 5.00 L to 105. L at 300 K. Calculate the work done during this process using: (a) the ideal gas equation, and (b) the van der Waals equation of state. Van der Waals parameters for Ar are available in the back of the book. Compare the two results, what percentage of the work done by the van der Waals gas arises due to having...
Problem 18.41 For oxygen gas, the van der Waals equation of state achieves its best fit...
Problem 18.41 For oxygen gas, the van der Waals equation of state achieves its best fit for a=0.14N⋅m4/mol2 and b=3.2×10−5m3/mol. Part A Determine the pressure in 1.7 mol of the gas at 9 ∘C if its volume is 0.50 L , calculated using the van der Waals equation. Express your answer using two significant figures. Part B Determine the pressure in 1.7 mol of the gas at 9 ∘C if its volume is 0.50 L , calculated using the ideal...
A 1.89 mole sample of Ar undergoes an isothermal reversible expansion from an initial volume of...
A 1.89 mole sample of Ar undergoes an isothermal reversible expansion from an initial volume of 2.00 L to a final volume of 85.0 L at 308 K . Part B Calculate the work done in this process using the van der Waals equation of state. Express your answer using three significant figures. Part C What percentage of the work done by the van der Waals gas arises from the attractive potential? Express your answer using two significant figures.
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted...
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted by 1.00 mole of Argon at a volume of 1.31 L at 426 K. The van der Waals parameters a and b for Argon are 1.355 bar*dm6*mol-2 and 0.0320 dm3*mol-1, respectively. Is the attractive or repulsive portion of the potential dominant under these conditions?
A. Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of...
A. Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.990 L at a temperature of 286.5 K . B. Use the ideal gas equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.990 L at a temperature of 286.5 K .
Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of Cl2...
Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.755 L at a temperature of 302.0 K . Use the ideal gas equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.755 L at a temperature of 302.0 K
The van der Waals equation of state is (P + a(n/V )^2)(V/n − b) = RT,...
The van der Waals equation of state is (P + a(n/V )^2)(V/n − b) = RT, where a and b are gas-specific constants. For Hydrogen gas, a = 2.45 × 10^-2P a · m^6 and b = 26.61 × 10^-6m^3/mol, while for an ideal gas a = b = 0. (a) Consider trying to measure the ideal gas constant in a lab from the relation R = P V/(nT), where P, V, n, and T are all measured parameters. However,...
Consider the van der Waals equation of state. Would you expect acetone or acetic acid to...
Consider the van der Waals equation of state. Would you expect acetone or acetic acid to have a higher value of a? For full credit, you must explain your answer Would expansion against an external real gas with a compression factor of 0.8 take more, less, or the same amount of work compared to expansion against the same ideal gas? For full credit, you must rationalize your answer What would you expect to be the constant-volume heat capacity of a...
How much work is done an ideal gas at 77 F in expanding from a volume...
How much work is done an ideal gas at 77 F in expanding from a volume of 0.02 m3 to 220 L against a constant pressure of 6 x105 Pa and what will be a final temperature ? a) 120kJ;3005C b)1.2x105 J;5441F c)120000 J;3278 K d)all of the above e)none