Question

7. 1.55 moles of Argon gas undergo an isothermal reversible expansion from an initial volume of...

7. 1.55 moles of Argon gas undergo an isothermal reversible expansion from an initial volume of 5.00 L to 105. L at 300 K. Calculate the work done during this process using: (a) the ideal gas equation, and (b) the van der Waals equation of state. Van der Waals parameters for Ar are available in the back of the book. Compare the two results, what percentage of the work done by the van der Waals gas arises due to having to overcome the attractive potential

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Derive an expression for the isothermal reversible expansion of a van der Waals gas. Account physically...
Derive an expression for the isothermal reversible expansion of a van der Waals gas. Account physically for the way in which the coefficients a and b appear in the expression. Using Maple, plot the expression along with that for an ideal gas. For the van der Waals gas, use a case first where a = 0 and b = 5.11 x 10-2 mol-1 and where a = 4.2 L2 atm mol-2 and b = 0. Take Vi = 1.0 L,...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
According to the ideal gas law, a 10.59 mol sample of argon gas in a 0.8229...
According to the ideal gas law, a 10.59 mol sample of argon gas in a 0.8229 L container at 495.4 K should exert a pressure of 523.2 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Ar gas, a = 1.345 L2atm/mol2 and b = 3.219×10-2 L/mol. ??? % Hint: % difference = 100 × (P ideal - Pvan der Waals) / P ideal
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted...
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted by 1.00 mole of Argon at a volume of 1.31 L at 426 K. The van der Waals parameters a and b for Argon are 1.355 bar*dm6*mol-2 and 0.0320 dm3*mol-1, respectively. Is the attractive or repulsive portion of the potential dominant under these conditions?
According to the ideal gas law, a 9.939 mol sample of argon gas in a 0.8276...
According to the ideal gas law, a 9.939 mol sample of argon gas in a 0.8276 L container at 500.6 K should exert a pressure of 493.3 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Ar gas, a = 1.345 L2atm/mol2 and b = 3.219×10-2 L/mol.
Two ideal gas systems undergo reversible expansion starting from the same P and V. At the...
Two ideal gas systems undergo reversible expansion starting from the same P and V. At the end of the expansion, the two systems have the same volume. The pressure in the system that has undergone adiabatic expansion is lower than that in the system that has undergone isothermal expansion. Explain this observation without using equations.
A Carnot engine uses the expansion and compression of n moles of argon gas, for which...
A Carnot engine uses the expansion and compression of n moles of argon gas, for which CV=(3/2)R. This engine operates between temperatures TC and TH. During the isothermal expansion a→b, the volume of the gas increases from Va to Vb=2Va. a)Calculate the work done during the isothermal expansion a→b. Express your answer in terms of the variables n, TH, and gas constant R. b)Calculate the work Wbc done during the adiabatic expansion b→c. Express your answer in terms of the...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from state A to state B and then returns to state A by another process. The volume of the gas in state B is three times its initial volume. (a) For the process AB, find the work done by the gas and its change in entropy. work = J change in entropy = J/K (b) Find the gas's change in entropy for the process BA....
1 mole of a gas undergoes a mechanically reversible isothermal expansion from an initial volume 1...
1 mole of a gas undergoes a mechanically reversible isothermal expansion from an initial volume 1 liter to a final volume 10 liter at 25oC. In the process, 2.3 kJ of heat is absorbed in the system from the surrounding. The gas follows the following formula: V=RTP+b where V is the molar specific volume, and Tand Pare temperature (abosolute) and gas pressure respectively. Given R= 8.314 J/(mol.K) and b= 0.0005 m3. Evaluate the following a) Work (include sign) b) Change...
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2...
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2 against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT