Question

Problem 18.41 For oxygen gas, the van der Waals equation of state achieves its best fit...

Problem 18.41

For oxygen gas, the van der Waals equation of state achieves its best fit for a=0.14N⋅m4/mol2 and b=3.2×10−5m3/mol.

Part A

Determine the pressure in 1.7 mol of the gas at 9 ∘C if its volume is 0.50 L , calculated using the van der Waals equation.

Express your answer using two significant figures.

Part B

Determine the pressure in 1.7 mol of the gas at 9 ∘C if its volume is 0.50 L , calculated using the ideal gas law.

Express your answer using two significant figures.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the van der Waals equation and the ideal gas equation to calculate the pressure for...
Use the van der Waals equation and the ideal gas equation to calculate the pressure for 2.00 mol He gas in a 1.00 L container at 300.0 K. 1st attempt Part 1 (5 points) Ideal gas law pressure_____ atm Part 2 (5 points) Van der Waals pressure_____ atm
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted...
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted by 1.00 mole of Argon at a volume of 1.31 L at 426 K. The van der Waals parameters a and b for Argon are 1.355 bar*dm6*mol-2 and 0.0320 dm3*mol-1, respectively. Is the attractive or repulsive portion of the potential dominant under these conditions?
Use the van der Waals equation of state to calculate the pressure of 4.00 mol of...
Use the van der Waals equation of state to calculate the pressure of 4.00 mol of Xe at 483 K in a 4.20-L vessel. Van der Waals constants can be found here. Use the ideal gas equation to calculate the pressure under the same conditions.
Use the van der Waals equation of state to calculate the pressure of 2.90 mol of...
Use the van der Waals equation of state to calculate the pressure of 2.90 mol of CH4 at 457 K in a 4.50 L vessel. Van der Waals constants can be found here. P= ________ atm Use the ideal gas equation to calculate the pressure under the same conditions. P= ______ atm
The amount n = 2.00 mol of a van der Waals gas with a = 0.245...
The amount n = 2.00 mol of a van der Waals gas with a = 0.245 m6 Pa mol-2 occupies a volume of 0.840 L if the gas is at a temperature of 85.0 K and at a pressure of 2850 kPa. From this information, calculate the van der Waals constant b and the pressure p of this gas sample when it occupies a volume of 1.680 dm3 at T = 255 K.
A. Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of...
A. Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.990 L at a temperature of 286.5 K . B. Use the ideal gas equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.990 L at a temperature of 286.5 K .
For a gas obeying the van der Waals equation of state evaluate the difference between the...
For a gas obeying the van der Waals equation of state evaluate the difference between the two specific heats Cp − Cv. Express your result in terms of ?, ? and the van der Waals constants ? and ?.
Use the van der Waals equation of state to calculate the pressure of 3.20 mol of...
Use the van der Waals equation of state to calculate the pressure of 3.20 mol of H2O at 467 K in a 3.70 L vessel. Use the ideal gas equation to calculate the pressure under the same conditions.
Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of Cl2...
Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.755 L at a temperature of 302.0 K . Use the ideal gas equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.755 L at a temperature of 302.0 K
The amount 2.00 mol of a van der waals gas with a=0.245 m^6 Pa mol^-2 occupies...
The amount 2.00 mol of a van der waals gas with a=0.245 m^6 Pa mol^-2 occupies a volume of 0.840 L if the gas is at a temperature of 85k and at a pressure of 2850 kPa. From this information, calculate the van der waals constant b and pressure p of this sample when it occupies a volume of 1680 dm^3 at T=255k.