Question

A 1.89 mole sample of Ar undergoes an isothermal reversible expansion from an initial volume of...

A 1.89 mole sample of Ar undergoes an isothermal reversible expansion from an initial volume of 2.00 L to a final volume of 85.0 L at 308 K .

Part B

Calculate the work done in this process using the van der Waals equation of state.

Express your answer using three significant figures.

Part C

What percentage of the work done by the van der Waals gas arises from the attractive potential?

Express your answer using two significant figures.

Homework Answers

Answer #1

Vf= final volume and Vi = initila volume

for isothermal reversibel expansion, work done =-n*T*ln(Vf/Vi)= 1.89*308* ln (85/2)= -179joules. During expansion work is done by the system on surroundings. Hence -ve/

2. For Argon a= 1.355 BarL2/mole2 =1.355*0.9869 atm.L2/mole2= `1.34 atmL2/mole2 and b= 0.03201 L/mole

work done by vanderwall gas =- { nRT ln (Vf-nb)/(Vi-nb) +n2a*(1/Vf-1/Vi) =-{1.89*0.0821* 308*ln [(85-1.85*0.0320)/ (2-1.85*0.0320) +1.34*1.89*1.89*(1/85-1/2)=-[180.599-2.34) =178.262

2.34 Joules is the work from attractive potentia l

hence % work = 100*(2.34/178.262)=1.31%

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7. 1.55 moles of Argon gas undergo an isothermal reversible expansion from an initial volume of...
7. 1.55 moles of Argon gas undergo an isothermal reversible expansion from an initial volume of 5.00 L to 105. L at 300 K. Calculate the work done during this process using: (a) the ideal gas equation, and (b) the van der Waals equation of state. Van der Waals parameters for Ar are available in the back of the book. Compare the two results, what percentage of the work done by the van der Waals gas arises due to having...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
1 mole of a gas undergoes a mechanically reversible isothermal expansion from an initial volume 1...
1 mole of a gas undergoes a mechanically reversible isothermal expansion from an initial volume 1 liter to a final volume 10 liter at 25oC. In the process, 2.3 kJ of heat is absorbed in the system from the surrounding. The gas follows the following formula: V=RTP+b where V is the molar specific volume, and Tand Pare temperature (abosolute) and gas pressure respectively. Given R= 8.314 J/(mol.K) and b= 0.0005 m3. Evaluate the following a) Work (include sign) b) Change...
Derive an expression for the isothermal reversible expansion of a van der Waals gas. Account physically...
Derive an expression for the isothermal reversible expansion of a van der Waals gas. Account physically for the way in which the coefficients a and b appear in the expression. Using Maple, plot the expression along with that for an ideal gas. For the van der Waals gas, use a case first where a = 0 and b = 5.11 x 10-2 mol-1 and where a = 4.2 L2 atm mol-2 and b = 0. Take Vi = 1.0 L,...
Derive the expression for work done by expanding a van der Waal's system. Express the relationship:...
Derive the expression for work done by expanding a van der Waal's system. Express the relationship: a) in terms of volume b) in terms of pressure c) Calculate the work done by isothermal expansion of a van der Waals gas from 1 L to 2 L, and compare the result to the work done in an ideal system. Comment on why the values are different.
Problem 7.24 A sample containing 42.1 g of Ar is enclosed in a container of volume...
Problem 7.24 A sample containing 42.1 g of Ar is enclosed in a container of volume 8.77×10−2 L at 375 K. Part A Calculate P using the ideal gas equation of state. Express your answer with the appropriate units. Part B Calculate P using the van der Waals equation of state. Express your answer with the appropriate units. Part C Calculate P using the Redlich-Kwong equation of state. Express your answer with the appropriate units.
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric...
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric expansion at 1 bar and the volume increases from 0.5 L to 1 L. (a) Find the heat per mole, the work per mole done, and the change in the molar internal energy, ΔUm, the molar enthalpy, ΔHm, for this process. b) What are the entropy changes ΔSm of the system and of the surroundings? Is this process spontaneous? Justify your answer.
Problem 18.41 For oxygen gas, the van der Waals equation of state achieves its best fit...
Problem 18.41 For oxygen gas, the van der Waals equation of state achieves its best fit for a=0.14N⋅m4/mol2 and b=3.2×10−5m3/mol. Part A Determine the pressure in 1.7 mol of the gas at 9 ∘C if its volume is 0.50 L , calculated using the van der Waals equation. Express your answer using two significant figures. Part B Determine the pressure in 1.7 mol of the gas at 9 ∘C if its volume is 0.50 L , calculated using the ideal...
Consider 5.000 mol of neon in a 208.7 cm^3 piston at 120.0 K. If the gas...
Consider 5.000 mol of neon in a 208.7 cm^3 piston at 120.0 K. If the gas undergoes isometric cooling to one-half of its initial temperature and then undergoes isothermal reversible expansion to four times of its initial volume, (a) compute the work done assuming the gas behaves ideally. Next, (b) compute the work done for the entire process assuming the gas behaves as a van der Waal's gas (a = 0.2050 atmL^2/mol^2, b = 1.670 x 10^-2 L/mol). (c) Compare...
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2...
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2 against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT