Question

Which should be shorter for the same amount of magnification, a telescope with two converging lenses,...

Which should be shorter for the same amount of magnification, a telescope with two converging lenses, or one with a converging lens and a diverging lens?

Homework Answers

Answer #1

In Galilean telescope (one converging one diverging lens), it is possible to have a telescopic length lesser than the fo (focal length of objective lens). The net length would be around the difference of focal lengths of the two lenses.

For a Keplerian telescope (two converging lenses), it is not possible to have telescopic length lesser than the fo (focal length of objective lens). The net length would be about the sum of the focal lengths of the two lenses.

Thus, for the same amount of magnification a telescope with a converging lens and a diverging lens would be shorter than that of a telescope with two converging lenses.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two lenses are placed a distance of 20.0 cm apart. The leftmost lens is a converging...
Two lenses are placed a distance of 20.0 cm apart. The leftmost lens is a converging lens with a focal length of 10.0 cm while the seconds lens is a diverging lends with a focal length of 14.0. If an object is placed 9.0 cm to the left of the converging lens, determine the magnification of the two lenses combined.
Two converging lenses with the focal lengths f 1 = 0.2 m and f2 = 0.4...
Two converging lenses with the focal lengths f 1 = 0.2 m and f2 = 0.4 m are positioned at a distance f1 + f2 to each other. Such arrangements are called "beam expanders" and are often used in laser technology a) What is the expansion ratio W2 / W1? One of the two converging lenses is now to be replaced by a diverging lens, with the same expansion ratio W2 / W1 to be achieved. b) Which of the...
The focal lengths of the converging and diverging lenses are +15 and -20 cm, respectively. The...
The focal lengths of the converging and diverging lenses are +15 and -20 cm, respectively. The distance between them is 50 cm and the object is placed 10 cm to the left of the converging lens. Determine the location of the final image with respect to the diverging lens. Is this image real or virtual? Find the total magnification; is the image inverse or upright?
The focal lengths of the converging and diverging lenses in the diagram are 8 and -11...
The focal lengths of the converging and diverging lenses in the diagram are 8 and -11 cm, respectively. The distance between the lenses is 22 cm and the object is placed 14 cm to the left of the converging lens. Determine the location of the first image with respect to the first lens (including the sign) q1=  cm. Find the magnification of this image M1=  . Determine the second object distance. p2=  cm. Determine the second (final) image distance with respect to the...
Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -11.7...
Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -11.7 cm , are placed 25.0 cm apart. An object is placed 60.0 cm in front of the converging lens. Determine the position of the final image formed. Express your answer with the appropriate units. di =    Determine the magnification of the final image formed. m=   
Two lenses, one converging with focal length 21.0 cm and one diverging with focal length −...
Two lenses, one converging with focal length 21.0 cm and one diverging with focal length − 12.0 cm , are placed 25.0 cm apart. An object is placed 60.0 cm in front of the converging lens. Part A Find the final image distance from second lens. Follow the sign conventions. Express your answer to two significant figures and Part B Determine the magnification of the final image formed. Follow the sign conventions. Express your answer using two significant figures include...
One diverging and converging lenses are separated by 12cm. The first lens on the left is...
One diverging and converging lenses are separated by 12cm. The first lens on the left is divergent with focal point of 25cm while the second lens on the right is f=10cm. The object is real and located 10cm in front of the divergent lens. a) Find the position of the image due to the first lens, b) Find the final position of the image, c) calculate the total magnification.
Two lenses, one converging with focal length 20.5 cm and one diverging with focal length ?...
Two lenses, one converging with focal length 20.5 cm and one diverging with focal length ? 10.5 cm , are placed 25.0?cm apart. An object is placed 60.0?cm in front of the converging lens. Part A Find the final image distance from second lens. Follow the sign conventions. Express your answer to two significant figures and include the appropriate units. di2 = Part B Determine the magnification of the final image formed. Follow the sign conventions. Express your answer using...
An optical system consists of two lenses separated by 35 cm – first is converging with...
An optical system consists of two lenses separated by 35 cm – first is converging with focal length 10 cm and the second is diverging with focal length 15 cm. An object is 20 cm to the left of the first lens. Find the position of the final image using both a ray diagram and the thin-lens equation. Is the image real or virtual? Erect or inverted? What is the overall magnification of the image?
Two lenses are placed 50 cm apart. The first lens is converging and has a focal...
Two lenses are placed 50 cm apart. The first lens is converging and has a focal length of 20 cm, and the second lens is diverging and has a focal length of 15 cm. If an object is placed 55 cm in front of the first lens, where is the final image located? Give your answer in relation to the second lens. What is the overall magnification? Is the final image upright or inverted? Is the final image real or...