Question

Two lenses, one converging with focal length 20.5 cm and one diverging with focal length ?...

Two lenses, one converging with focal length 20.5 cm and one diverging with focal length ? 10.5 cm , are placed 25.0?cm apart. An object is placed 60.0?cm in front of the converging lens.

Part A Find the final image distance from second lens. Follow the sign conventions. Express your answer to two significant figures and include the appropriate units. di2 = Part B Determine the magnification of the final image formed. Follow the sign conventions. Express your answer using two significant figures. m =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two lenses, one converging with focal length 21.0 cm and one diverging with focal length −...
Two lenses, one converging with focal length 21.0 cm and one diverging with focal length − 12.0 cm , are placed 25.0 cm apart. An object is placed 60.0 cm in front of the converging lens. Part A Find the final image distance from second lens. Follow the sign conventions. Express your answer to two significant figures and Part B Determine the magnification of the final image formed. Follow the sign conventions. Express your answer using two significant figures include...
Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -11.7...
Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -11.7 cm , are placed 25.0 cm apart. An object is placed 60.0 cm in front of the converging lens. Determine the position of the final image formed. Express your answer with the appropriate units. di =    Determine the magnification of the final image formed. m=   
A converging lens of focal length 8.050 cm is 20.4 cm to the left of a...
A converging lens of focal length 8.050 cm is 20.4 cm to the left of a diverging lens of focal length -6.64 cm . A coin is placed 12.2 cm to the left of the converging lens. 1. Find the location of the coin's final image. a. to the left of the converging lens b. between the lenses c. to the right of the diverging lens 2. Find the magnification of the coin's final image. Express your answer using two...
A converging lens of focal length 8.030 cm is 20.4 cm to the left of a...
A converging lens of focal length 8.030 cm is 20.4 cm to the left of a diverging lens of focal length -6.73 cm . A coin is placed 12.2 cm to the left of the converging lens. Find the location of the coin's final image. Answer: to the right of the diverging lens PART B: Express your answer using two significant figures. di= __________ cm to the right of the diverging lens PART C: Find the magnification of the coin's...
A converging lens with a focal length of 60 cm and a diverging lens with a...
A converging lens with a focal length of 60 cm and a diverging lens with a focal length of -70 cm are 310 cm apart. A 2.7-cm-tall object is 80 cm in front of the converging lens. Calculate the distance between the final image and the diverging lens. Express your answer to two significant figures and include the appropriate units. Calculate the image height. Express your answer to two significant figures and include the appropriate units.
Two converging lenses are placed 40.0 cm apart. The focal length of the lens on the...
Two converging lenses are placed 40.0 cm apart. The focal length of the lens on the right is 21.0 cm , and the focal length of the lens on the left is 10.5 cm . An object is placed to the left of the 10.5 cm focal-length lens. A final image from both lenses is inverted and located halfway between the two lenses. How far to the left of the 10.5 cmcm focal-length lens is the original object?
A diverging lens with a focal length of -13 cm is placed 12 cm to the...
A diverging lens with a focal length of -13 cm is placed 12 cm to the right of a converging lens with a focal length of 22 cm . An object is placed 34 cm to the left of the converging lens. Where will the final image be located? Express your answer using two significant figures. d =    cm to the left of the diverging lens Where will the image be if the diverging lens is 58 cm from...
Two lenses are placed 50 cm apart. The first lens is converging and has a focal...
Two lenses are placed 50 cm apart. The first lens is converging and has a focal length of 20 cm, and the second lens is diverging and has a focal length of 15 cm. If an object is placed 55 cm in front of the first lens, where is the final image located? Give your answer in relation to the second lens. What is the overall magnification? Is the final image upright or inverted? Is the final image real or...
Two thin lenses with a focal length of magnitude 11.0 cm, the first diverging and the...
Two thin lenses with a focal length of magnitude 11.0 cm, the first diverging and the second converging, are located 8.25 cm apart. An object 1.60 mm tall is placed 18.3 cm to the left of the first (diverging) lens. Part A How far from this first lens is the final image formed? Part B Is the final image real or virtual? Part C What is the height of the final image? Part D Is it upright or inverted?
Two thin lenses with a focal length of magnitude 10.0 cm , the first diverging and...
Two thin lenses with a focal length of magnitude 10.0 cm , the first diverging and the second converging, are located 7.50 cm apart. An object 3.00 mm tall is placed 16.7 cm to the left of the first (diverging) lens. How far from this first lens is the final image formed? Is the final image real or virtual? What is the height of the final image? Is it upright or inverted? Thank you!!