Question

Two lenses, one converging with focal length 21.0 cm and one diverging with focal length −...

Two lenses, one converging with focal length 21.0 cm and one diverging with focal length − 12.0 cm , are placed 25.0 cm apart. An object is placed 60.0 cm in front of the converging lens.

Part A

Find the final image distance from second lens. Follow the sign conventions.

Express your answer to two significant figures and

Part B

Determine the magnification of the final image formed. Follow the sign conventions.

Express your answer using two significant figures

include the appropriate units.

Homework Answers

Answer #1

Image distance is given by
1/di + 1/do = 1/f

For first image formed by converging lens, we get
1/di + 1/60 = 1/21
di = 32.3
+ve sign indicates real image
magnification of first lens M1 = - do/di = -0.54
-ve sign indicates inverted image

This first image is object for second lens at distance of 25 cm.
do for this lens is -7.3 ( -ve because first image is formed beyond second lens, hence a virtual object)

so for second lens
1/di - 1/7.3 = -1/12
di = 18.63
hence final image is 19 cm ( two significant figures) from diverging lens. It's real image as di is +ve)

Magnification M2 = - (18.63/-7.3) = 2.55

Total magnification M = M1 x M2 = -1.4
hence an inverted image


Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two lenses, one converging with focal length 20.5 cm and one diverging with focal length ?...
Two lenses, one converging with focal length 20.5 cm and one diverging with focal length ? 10.5 cm , are placed 25.0?cm apart. An object is placed 60.0?cm in front of the converging lens. Part A Find the final image distance from second lens. Follow the sign conventions. Express your answer to two significant figures and include the appropriate units. di2 = Part B Determine the magnification of the final image formed. Follow the sign conventions. Express your answer using...
Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -11.7...
Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -11.7 cm , are placed 25.0 cm apart. An object is placed 60.0 cm in front of the converging lens. Determine the position of the final image formed. Express your answer with the appropriate units. di =    Determine the magnification of the final image formed. m=   
A converging lens with a focal length of 60 cm and a diverging lens with a...
A converging lens with a focal length of 60 cm and a diverging lens with a focal length of -70 cm are 310 cm apart. A 2.7-cm-tall object is 80 cm in front of the converging lens. Calculate the distance between the final image and the diverging lens. Express your answer to two significant figures and include the appropriate units. Calculate the image height. Express your answer to two significant figures and include the appropriate units.
A converging lens of focal length 8.050 cm is 20.4 cm to the left of a...
A converging lens of focal length 8.050 cm is 20.4 cm to the left of a diverging lens of focal length -6.64 cm . A coin is placed 12.2 cm to the left of the converging lens. 1. Find the location of the coin's final image. a. to the left of the converging lens b. between the lenses c. to the right of the diverging lens 2. Find the magnification of the coin's final image. Express your answer using two...
A converging lens of focal length 8.030 cm is 20.4 cm to the left of a...
A converging lens of focal length 8.030 cm is 20.4 cm to the left of a diverging lens of focal length -6.73 cm . A coin is placed 12.2 cm to the left of the converging lens. Find the location of the coin's final image. Answer: to the right of the diverging lens PART B: Express your answer using two significant figures. di= __________ cm to the right of the diverging lens PART C: Find the magnification of the coin's...
Two lenses are placed 50 cm apart. The first lens is converging and has a focal...
Two lenses are placed 50 cm apart. The first lens is converging and has a focal length of 20 cm, and the second lens is diverging and has a focal length of 15 cm. If an object is placed 55 cm in front of the first lens, where is the final image located? Give your answer in relation to the second lens. What is the overall magnification? Is the final image upright or inverted? Is the final image real or...
Two converging lenses, each of focal length 14.9 cm, are placed 39.9 cm apart, and an...
Two converging lenses, each of focal length 14.9 cm, are placed 39.9 cm apart, and an object is placed 30.0 cm in front of the first lens. Where is the final image formed? The image is located x cm  ---Location--- in front of the second lens. What is the distance? What is the magnification of the system?
Two converging lenses, each of focal length 15.1 cm, are placed 40.4 cm apart, and an...
Two converging lenses, each of focal length 15.1 cm, are placed 40.4 cm apart, and an object is placed 30.0 cm in front of the first lens. Where is the final image formed? The image is located ______ cm  ---Location---a) in front of the second lens. b) behind the second lens. c)in front of the first lens. What is the magnification of the system? M = ______ ?
A)Two converging lenses, each of focal length 13.1 cm, are placed 58.6 cm apart, and an...
A)Two converging lenses, each of focal length 13.1 cm, are placed 58.6 cm apart, and an object is placed 29.9 cm in front of the first. Where is the final image relative to the second lens formed? B)What is the magnification of the system?
Two converging lenses are placed 40.0 cm apart. The focal length of the lens on the...
Two converging lenses are placed 40.0 cm apart. The focal length of the lens on the right is 21.0 cm , and the focal length of the lens on the left is 10.5 cm . An object is placed to the left of the 10.5 cm focal-length lens. A final image from both lenses is inverted and located halfway between the two lenses. How far to the left of the 10.5 cmcm focal-length lens is the original object?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT