Question

A circular area of radius R=8.5 cm has a magnetic field into the page. This field...

A circular area of radius R=8.5 cm has a magnetic field into the page. This field is time-varying such that dB/dt = 0.13 T/s. Take the positive direction to be into the page, and assume an idealized field that is zero immediately outside R. (a) Describe the Electric field generated by this time-varying B-field (draw a diagram). (b) Find an expression for the magnitude of E of the induced electric field for r < R. Evaluate at r=5 cm. (c) Find the expression for the magnitude of E outside the circular area (r>R). (d) Plot the magnitude E(r) for all r values.

Homework Answers

Answer #1

If your query is been resolved please upvote and if you have any doubt please comment down below, I'll be happy to help you out. It takes a lot of time and hardwork to answer each question please encourage the effort by upvote/like to answer. Thanks and regards.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that you have a circular magnetic field ‘B’ of radius R = 9.0 cm, pointing...
Suppose that you have a circular magnetic field ‘B’ of radius R = 9.0 cm, pointing inside the page and if this field is increased at the rate dB/dt = 0.15 T/sec. calculate (a) the magnitude of induced electric field at a point within the magnetic field at a distance r =5.0 cm, from the center of the field and (b) the magnitude of the induced electric field at a point out side the magnetic field at a distance r...
1. A cylindrical region of space of radius R contains a uniform magnetic field B with...
1. A cylindrical region of space of radius R contains a uniform magnetic field B with direction into the page. If the magnitude B inside the cylinder changes in time and outside the cylinder it is zero, describe the induced electric field (magnitude and direction) for points inside the cylinder (r < R). Find the magnitude and direction of the induced electric field at r = 5.00 cm if the magnetic field changes at a constant rate from 0.500T to...
The figure shows a circular region of radius R = 4.17 cm in which an electric...
The figure shows a circular region of radius R = 4.17 cm in which an electric flux is directed out of the plane of the page. The flux encircled by a concentric circle of radius r is given by E,enc = (0.600 V·m/s)(r/R)t, where r ≤ R and t is in seconds. What is the magnitude of the induced magnetic field at radial distance 2.17 cm? 1.325*10^17 T is wrong
1)in the figure below and electric field is directed out of the page within a circular...
1)in the figure below and electric field is directed out of the page within a circular region of radius R=2.75cm. the field magnitude is E=(0.410 v/m*s)(1-r/R)t where the t is in seconds and the r is the radial distance a) what is the magnitude of the induced magnetic filed at a radial distance of 2cm? b)what is the magnitude of the induced magnetic filed at a radial distance of 5cm?
A 149-turn circular coil of radius 2.67 cm is immersed in a uniform magnetic field that...
A 149-turn circular coil of radius 2.67 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. During 0.153 s the magnetic field strength increases from 51.1 mT to 99.3 mT. Find the magnitude of the average EMF, in millivolts, that is induced in the coil during this time interval.
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to...
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.20 s.
A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field...
A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.121 s, the magnetic field strength increases from 55.7 mT to 95.9 mT. Find the magnitude of the average emf avgEavg induced in the coil during this time interval, in millivolts. avg=Eavg= ?
In the figure below, a long circular pipe with outside radius R = 2.20 cm carries...
In the figure below, a long circular pipe with outside radius R = 2.20 cm carries a (uniformly distributed) current i = 13.5 mA into the page. A wire runs parallel to the pipe at a distance of 3.00R from center to center. Find the (a) magnitude and (b) direction (into or out of the page) of the current in the wire such that the ratio of the magnitude of the net magnetic field at point P to the magnitude...
A time-varying magnetic field is perpendicular to the plane of a circular loop of diameter 10...
A time-varying magnetic field is perpendicular to the plane of a circular loop of diameter 10 cm made with wire of diameter 3.4 mm and resistivity 2.07 × 10-8?·m. The magnetic field increases as a function of time, with magnitude B = (0.79 t) T/s a) What is the magnitude of the emf induced in the loop? b) What is the value of the current through the loop? c) At what rate does energy appear as thermal energy in the...
A circular wire loop with a radius of 10 cm is placed in a magnetic field...
A circular wire loop with a radius of 10 cm is placed in a magnetic field of 1.0 T that is parallel to its axis into the page. The loop is stretched to half of its initial area within a time of 0.1 seconds. What is the induced voltage and the direction of induced current? (a) 157 mV, clockwise current (b) 120 mV, counter clockwise current (c) 79 mV, clockwise current (d) 0 V, no current The answer is A...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT