Question

Suppose that you have a circular magnetic field ‘B’ of radius R = 9.0 cm, pointing...

Suppose that you have a circular magnetic field ‘B’ of radius R = 9.0 cm, pointing inside the page and if this field is increased at the rate dB/dt = 0.15 T/sec. calculate (a) the magnitude of induced electric field at a point within the magnetic field at a distance r =5.0 cm, from the center of the field and (b) the magnitude of the induced electric field at a point out side the magnetic field at a distance r = 12.0 cm

Homework Answers

Answer #1

For r = 5 cm

E = 3.75 10-3 V/m

For r = 12 cm

E = 5.06 10-3 V/m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A circular area of radius R=8.5 cm has a magnetic field into the page. This field...
A circular area of radius R=8.5 cm has a magnetic field into the page. This field is time-varying such that dB/dt = 0.13 T/s. Take the positive direction to be into the page, and assume an idealized field that is zero immediately outside R. (a) Describe the Electric field generated by this time-varying B-field (draw a diagram). (b) Find an expression for the magnitude of E of the induced electric field for r < R. Evaluate at r=5 cm. (c)...
1. A cylindrical region of space of radius R contains a uniform magnetic field B with...
1. A cylindrical region of space of radius R contains a uniform magnetic field B with direction into the page. If the magnitude B inside the cylinder changes in time and outside the cylinder it is zero, describe the induced electric field (magnitude and direction) for points inside the cylinder (r < R). Find the magnitude and direction of the induced electric field at r = 5.00 cm if the magnetic field changes at a constant rate from 0.500T to...
The figure shows a circular region of radius R = 4.17 cm in which an electric...
The figure shows a circular region of radius R = 4.17 cm in which an electric flux is directed out of the plane of the page. The flux encircled by a concentric circle of radius r is given by E,enc = (0.600 V·m/s)(r/R)t, where r ≤ R and t is in seconds. What is the magnitude of the induced magnetic field at radial distance 2.17 cm? 1.325*10^17 T is wrong
In the figure below, a long circular pipe with outside radius R = 2.20 cm carries...
In the figure below, a long circular pipe with outside radius R = 2.20 cm carries a (uniformly distributed) current i = 13.5 mA into the page. A wire runs parallel to the pipe at a distance of 3.00R from center to center. Find the (a) magnitude and (b) direction (into or out of the page) of the current in the wire such that the ratio of the magnitude of the net magnetic field at point P to the magnitude...
A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic field of magnitude 0.100 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 189 Ω. The magnetic field is now increased at a constant rate by a factor of 2.70 in 27.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing.
There is a uniform electric flux perpendicular to a circular region of radius R = 2.2...
There is a uniform electric flux perpendicular to a circular region of radius R = 2.2 cm. The electric flux is only contained within the circular region, and the total value can be expressed by the following function: ΦE = 5.3t, where ΦE is in V⋅m when t is in seconds. At a radial distance of 4.0 cm from the center of the circle, what is the magnitude of the induced magnetic field? Express your answer in fT (femtoteslas). Femto-...
1)in the figure below and electric field is directed out of the page within a circular...
1)in the figure below and electric field is directed out of the page within a circular region of radius R=2.75cm. the field magnitude is E=(0.410 v/m*s)(1-r/R)t where the t is in seconds and the r is the radial distance a) what is the magnitude of the induced magnetic filed at a radial distance of 2cm? b)what is the magnitude of the induced magnetic filed at a radial distance of 5cm?
a) There is a uniform electric flux perpendicular to a circular region of radius R =...
a) There is a uniform electric flux perpendicular to a circular region of radius R = 2.8 cm. The electric flux is only contained within the circular region, and the total value can be expressed by the following function: ΦE = 6.3t, where ΦE is in V⋅m when t is in seconds. At a radial distance of 4.9 cm from the center of the circle, what is the magnitude of the induced magnetic field? Express your answer in fT (femtoteslas)....
A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic field of magnitude 0.700 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 295 Ω. The magnetic field is now increased at a constant rate by a factor of 2.20 in 21.0s. a) Calculate the magnitude of the current induced in the loop while the field is increasing. b) With the magnetic field held...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 109 Ω. The magnetic field is now increased at a constant rate by a factor of 2.40 in 15.0s. 1) Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2) Calculate the magnitude of...