Question

A circular wire loop with a radius of 10 cm is placed in a magnetic field...

A circular wire loop with a radius of 10 cm is placed in a magnetic field of 1.0 T that is parallel to its axis into the page. The loop is stretched to half of its initial area within a time of 0.1 seconds. What is the induced voltage and the direction of induced current?

(a) 157 mV, clockwise current

(b) 120 mV, counter clockwise current

(c) 79 mV, clockwise current

(d) 0 V, no current

The answer is A but I especially don't understand how to figure out that it is clockwise. If it could be explained step by step that would be great. Thank you.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
6: A single-turn circular loop of wire rests flat on this page. A magnetic field is...
6: A single-turn circular loop of wire rests flat on this page. A magnetic field is directed perpendicular to this page pointing outwards (towards you). When the magnetic field strength increases from 3.2 T to 6.5 T in 0.026 seconds, a 1 V emf is induced in the coil. a) Calculate the radius of the loop. b) State the direction of the induced current and briefly explain how you arrived at your answer.
A magnetic field, strength 3T, has a direction out of the page. A loop of wire...
A magnetic field, strength 3T, has a direction out of the page. A loop of wire sits in the field and on the plane of the page (area vector of loop is out of page). The loop is much smaller than the extent of the field. The magnetic field starts to slowly change at a rate of -0.0001T/s. Looking down on the loop, which statement is correct? A. Magnetic flux out of page decreasing; anti-clockwise current induced in loop B....
A circular loop of wire with an area of .1m^2 is placed in a 2T magnetic...
A circular loop of wire with an area of .1m^2 is placed in a 2T magnetic field. The field increases at a rate of 0.2 T/S. What is the induced emf in the loop? What is the direction of the induced current in the loop?
A circular loop of radius 11.9 cm is placed in a uniform magnetic field. (a) If...
A circular loop of radius 11.9 cm is placed in a uniform magnetic field. (a) If the field is directed perpendicular to the plane of the loop and the magnetic flux through the loop is 7.40 ✕ 10−3 T · m2, what is the strength of the magnetic field? T (b) If the magnetic field is directed parallel to the plane of the loop, what is the magnetic flux through the loop? T · m2
1) A circular loop of radius 3.53 cm contains 61 turns of tightly wound wire. If...
1) A circular loop of radius 3.53 cm contains 61 turns of tightly wound wire. If the current in the windings is 0.634 A and a constant magnetic field of 0.462 T makes an angle of 70.3 ◦ with a vector perpendicular with the loop, what torque acts on the loop? 2) The clockwise circulating current in a solenoid is increasing at a rate of 13 A/s. The crosssectional area of the solenoid is 3.14159 cm2 , and there are...
A single loop of wire in the shape of a square with sides of length l=25.0...
A single loop of wire in the shape of a square with sides of length l=25.0 cm is sitting in a uniform magnetic field of 1.30 T. The field points out of the page, and the the loop is in the plane of the page with sides parallel to the x and y axes. (a) If a current of 3.70 A flows through the loop, what is the magnitude of the magnetic force on a single side of the loop?...
A loop of wire sits in a uniform magnetic field, everywhere pointing toward you. Due to...
A loop of wire sits in a uniform magnetic field, everywhere pointing toward you. Due to a changing magnetic flux through the loop, an induced current flows in the wire, clockwise as shown. The area of the loop is J. 1.63 m2 , and the magnetic field initially has magnitude K. 0.61 T. (a) Suppose that, over a time period of L. 1.47 s, the magnetic field changes from its initial value, producing an average induced voltage of M. 8.7...
A circular loop with 50 coils is pulled (to the right) from an external magnetic field...
A circular loop with 50 coils is pulled (to the right) from an external magnetic field of 0.8 T into the page. At t=0 the right edge of the loop is at the right edge of the magnetic field. After 0.250 seconds the loop has moved completely out of the magnetic field. Diameter of the coil is 10 cm Find the rate of change in flux through one loop as the loop if the loop is pulled out of the...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 109 Ω. The magnetic field is now increased at a constant rate by a factor of 2.40 in 15.0s. 1) Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2) Calculate the magnitude of...
A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 285 Ω. The magnetic field is now increased at a constant rate by a factor of 2.40 in 23.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Calculate the magnitude of the current...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT