Question

A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field...

A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.121 s, the magnetic field strength increases from 55.7 mT to 95.9 mT. Find the magnitude of the average emf avgEavg induced in the coil during this time interval, in millivolts.

avg=Eavg= ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 159 ‑turn circular coil of radius 3.49 cm and negligible resistance is immersed in a...
A 159 ‑turn circular coil of radius 3.49 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 10.9 Ω resistor to create a closed circuit. During a time interval of 0.141 s, the magnetic field strength decreases uniformly from 0.539 T to zero. Find the energy ? in millijoules that is dissipated in the resistor during this time interval.
A 173 ‑turn circular coil of radius 2.79 cm and negligible resistance is immersed in a...
A 173 ‑turn circular coil of radius 2.79 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 11.9 Ω resistor to create a closed circuit. During a time interval of 0.161 s, the magnetic field strength decreases uniformly from 0.673 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval. energy:____________ mJ
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to...
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.20 s.
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.23 V and a current of 2.4 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are...
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a...
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.60 s.
A 20-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic...
A 20-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic field of 1.00 T directed perpendicular to the plane of the coil. Beginning at time t = 0 s, the field is increased at a uniform rate until it reaches 1.30 T at t = 10.0 s. The field remains constant thereafter. 1) What is the magnitude of the induced emf in the coil at t < 0 s? 2) What is the magnitude...
A circular coil of 312 winds of wire (radius = 7.0 cm, resistance = 7.4 Ω)...
A circular coil of 312 winds of wire (radius = 7.0 cm, resistance = 7.4 Ω) is placed in a uniform magnetic field that is perpendicular to the plane of the loop. The magnitude of the field changes with time according to ? = 90sin(7?) mT, where ? is measured in seconds. Determine the magnitude of the current induced in the loop at ?=?/7 s.
A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field...
A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field that varies with time according to: B = (0.230 T/s)t + (4.00 x 10-5 T/s5)t5.  The coil is connected to a 450 ohm resistor, and its plane is perpendicular to the magnetic field.  The resistance of the coil can be neglected.  Find the induced emf in the coil as a function of time.
A circular wire loop of radius rr = 16 cmcm is immersed in a uniform magnetic...
A circular wire loop of radius rr = 16 cmcm is immersed in a uniform magnetic field BB = 0.375 TT with its plane normal to the direction of the field. If the field magnitude then decreases at a constant rate of −1.2×10−2 T/sT/s , at what rate should rr increase so that the induced emf within the loop is zero?
A uniform magnetic field of strength 22.3 mT passes through the center of a circular coil...
A uniform magnetic field of strength 22.3 mT passes through the center of a circular coil with a radius of 5.08 cm at an angle of 30.2° relative to the area vector of the coil. What is the magnetic flux through the coil?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT