Question

A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.121 s, the magnetic field strength increases from 55.7 mT to 95.9 mT. Find the magnitude of the average emf avgEavg induced in the coil during this time interval, in millivolts.

avg=Eavg= ?

Answer #1

A 149-turn circular coil of radius 2.67 cm is immersed in a
uniform magnetic field that is perpendicular to the plane of the
coil. During 0.153 s the magnetic field strength increases from
51.1 mT to 99.3 mT. Find the magnitude of the average EMF, in
millivolts, that is induced in the coil during this time
interval.

A 159 ‑turn circular coil of radius 3.49 cm and negligible
resistance is immersed in a uniform magnetic field that is
perpendicular to the plane of the coil. The coil is connected to a
10.9 Ω resistor to create a closed circuit. During a time interval
of 0.141 s, the magnetic field strength decreases uniformly from
0.539 T to zero. Find the energy ? in millijoules that is
dissipated in the resistor during this time interval.

A 173 ‑turn circular coil of radius 2.79 cm and negligible
resistance is immersed in a uniform magnetic field that is
perpendicular to the plane of the coil. The coil is connected to a
11.9 Ω resistor to create a closed circuit. During a time interval
of 0.161 s, the magnetic field strength decreases uniformly from
0.673 T to zero. Find the energy, in millijoules, that is
dissipated in the resistor during this time interval.
energy:____________ mJ

A 37-turn circular coil of
radius 4.60 cm and resistance 1.00 Ω is placed
in a magnetic field directed perpendicular to the plane of the
coil. The magnitude of the magnetic field varies in time according
to the expression B = 0.010
0t + 0.040 0t2,
where B is in teslas and t is in
seconds. Calculate the induced emf in the coil
at t = 4.20 s.

A magnetic field is perpendicular to the plane of a single-turn
circular coil. The magnitude of the field is changing, so that an
emf of 0.23 V and a current of 2.4 A are induced in the coil. The
wire is then re-formed into a single-turn square coil, which is
used in the same magnetic field (again perpendicular to the plane
of the coil and with a magnitude changing at the same rate). What
(a) emf and (b) current are...

9. A magnetic field is perpendicular to the
plane of a single-turn circular coil. The magnitude of the field is
changing, so that an emf of 0.77 V and a current of 2.7 A are
induced in the coil. The wire is then re-formed into a single-turn
square coil, which is used in the same magnetic field (again
perpendicular to the plane of the coil and with a magnitude
changing at the same rate). What emf is induced in the...

A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω
is placed in a magnetic field directed perpendicular to the plane
of the coil. The magnitude of the magnetic field varies in time
according to the expression B = 0.010 0t + 0.040
0t2, where B is in teslas and
t is in seconds. Calculate the induced emf in the coil at
t = 4.60 s.

A 20 turn loop is immersed in a magnetic field that’s spatially
uniform and varies in strength. Initially, the plane of the loop is
perpendicular to the magnetic field. At t= 0 s, the loop starts to
rotate so that 1.00 s later, the plane of the loop is parallel to
the magnetic field, thus rotating so that it completes one rotation
in 4.00 s. The magnetic field strength varies according to
?=1.20?^(−?1.90)T. The loop’s radius is 12.0 cm. What...

A 20-turn coil with a diameter of 6.00 cm is placed in a
constant, uniform magnetic field of 1.00 T directed perpendicular
to the plane of the coil. Beginning at time t = 0 s, the field is
increased at a uniform rate until it reaches 1.30 T at t = 10.0 s.
The field remains constant thereafter.
1) What is the magnitude of the induced emf in the coil at t
< 0 s?
2) What is the magnitude...

A five-turn circular wire coil of radius 0.425 m lies in a plane
perpendicular to a uniform magnetic field of magnitude 0.370 T. If
the wire is reshaped from a five-turn circle to a three-turn circle
in 0.101 s (while remaining in the same plane), what is the average
induced emf in the wire during this time?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 15 minutes ago

asked 20 minutes ago

asked 38 minutes ago

asked 39 minutes ago

asked 45 minutes ago

asked 48 minutes ago

asked 48 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago