Question

What is the total entropy change for a 0.410 kg piece of ice at an initial...

What is the total entropy change for a 0.410 kg piece of ice at an initial temperature of 0.00 degC if it is placed in a Styrofoam cup having 2.42 kg of water at an initial temperature of 22.1 degC. (assume the heat transfers in liquid form happen at the average temperature of each individual liquid)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small piece of ice (mass = 0.10 kg) at an initial temperature of 0oC is...
A small piece of ice (mass = 0.10 kg) at an initial temperature of 0oC is placed within glass of water, where the water's mass is 0.40 kg and it is at an initial temperature of 30oC.   (a) What is the final temperature of the system when thermal equilibrium is achieved assuming no heat leaks? (b) What is the entropy change of just the ice only while it melts? The latent heat of fusion and specific heats of ice and...
What is the equilibrium temperature if a 0.530 kg piece of copper at 283 degC is...
What is the equilibrium temperature if a 0.530 kg piece of copper at 283 degC is placed in a 0.390 kg aluminum cup with 4.10 kg of water at the same initial temperature of 21.0 degC?
A 5.10 kg piece of solid copper metal at an initial temperature T is placed with...
A 5.10 kg piece of solid copper metal at an initial temperature T is placed with 2.00 kg of ice that is initially at -25.0 ∘C. The ice is in an insulated container of negligible mass and no heat is exchanged with the surroundings. After thermal equilibrium is reached, there is 0.90 kg of ice and 1.10 kg of liquid water. Part A What was the initial temperature of the piece of copper? Express your answer to three significant figures...
What is the final temperature of a drink if the initial 1.10 kg of water is...
What is the final temperature of a drink if the initial 1.10 kg of water is at a temperature of 23.2 degC and 0.0700 kg of ice at 0 degC is placed in it?
A 2.7-kg piece of aluminum at 28.5 ∘C is placed in 1.0 kg of water in...
A 2.7-kg piece of aluminum at 28.5 ∘C is placed in 1.0 kg of water in a Styrofoam container at room temperature (20.0 ∘C). Estimate the net change in entropy of the system.
A 2.5 kg metallic block with an initial temperature of 80°C is placed in a styrofoam...
A 2.5 kg metallic block with an initial temperature of 80°C is placed in a styrofoam cup containing 0.1 kg of ice at -15°C. Assuming that no heat escapes from the cup what is the final temperature of the metallic block? The specific heat of the metal is 480 J/kg ∙ K, specific heat of ice is 2090 J/kg ∙ K, the latent heat of fusion of water is 3.33 × 105 J/kg, and the specific heat of water is...
A piece of ice at 0 0C is put in 2.00 Kg of water at 20...
A piece of ice at 0 0C is put in 2.00 Kg of water at 20 0C. The equilibrium temperature of the system becomes 5 0C. (Lf=333 kJ/Kg, cw=4186 J/Kg, TK=TC+273.15) a) Find the mass of ice? Kg b) Find the entropy change of ice? J/K c) Find the entropy change of water? J/K d) Find the total entropy change of sysem? J/K
Calculate the entropy change for the process of taking 1.00 kg of water from a temperature...
Calculate the entropy change for the process of taking 1.00 kg of water from a temperature of -26 C to +42 C keeping in mind that ice melts at 0 C. Assume a constant pressure of 1 bar and a temperature independent heat capacity within a given phase (Cpm = 37 J/Kmol for the solid and Cpm = 75 J/Kmol for the liquid state).
A 9.0×10−2-kg ice cube at 0.0 ∘C is dropped into a Styrofoam cup holding 0.30 kg...
A 9.0×10−2-kg ice cube at 0.0 ∘C is dropped into a Styrofoam cup holding 0.30 kg of water at 12 ∘C. Find the final temperature of the system. Assume the cup and the surroundings can be ignored. Find the amount of ice (if any) remaining. Find the initial temperature of the water that would be enough to just barely melt all of the ice.
Calculate the change in entropy as 0.4091 kg of ice at 273.15 K melts. The latent...
Calculate the change in entropy as 0.4091 kg of ice at 273.15 K melts. The latent heat of fusion of water is 333000 J/kg .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT