fourier transform
(Ans)
In mathematics,
Fourier transform (FT) is a mathematical transform that decomposes a function (often a function of time, or a signal) into its constituent frequencies, such as the expression of a musical chord in terms of the volumes and frequencies of its constituent notes. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of time.
The Fourier transform of a function of time is a complex-valued function of frequency, whose magnitude (absolute value) represents the amount of that frequency present in the original function, and whose argument is the phase offset of the basic sinusoid in that frequency. The Fourier transform is not limited to functions of time, but the domain of the original function is commonly referred to as the time domain. There is also an inverse Fourier transform that mathematically synthesizes the original function from its frequency domain representation, as proven by the Fourier inversion theorem.
A sinusoidal curve, with peak amplitude (1), peak-to-peak (2), RMS (3), and wave period (4).
Illustration of phase shift θ.
This is all about the Fourier transform.
I hope it is clear. Thank you.
Get Answers For Free
Most questions answered within 1 hours.