Question

Given: G = 6.67259 × 10−11 N · m2 /kg2 A satellite moves in a circular...

Given: G = 6.67259 × 10−11 N · m2 /kg2 A satellite moves in a circular orbit around Earth at a speed of 3650 m/s. Find the satellite’s altitude above the surface of Earth. Answer in units of m. 015 (part 2 of 2) 10.0 points Find the period of the satellite’s orbit. Answer in units of h

Homework Answers

Answer #1

The gravitational force of earth on the satellite provides the centripetal force. We use this to find the period and altitude as shown below***********************************************************************************************
This concludes the answers. If there is any mistake or omission, let me know immediately and I will fix it....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(part 1 of 3) A satellite of mass 398 kg is launched from a site on...
(part 1 of 3) A satellite of mass 398 kg is launched from a site on the Equator into an orbit at 544 km above Earth’s surface. If the orbit is circular, what is the satellite’s speed in orbit? The gravitational constant is 6.67259 × 10^−11 N · m2/kg2 , the mass of the earth is 5.98 × 10^24 kg and its radius is 6.37 × 10^6 m. Answer in units of m/s. (part 2 of 3) What is the...
A GPS satellite moves around Earth in a circular orbit with period 11 h 58 min....
A GPS satellite moves around Earth in a circular orbit with period 11 h 58 min. Determine the radius of its orbit. Hint: use the Newton’s 2nd law of motion relating the gravitational force and the centripetal acceleration of the satellite. Assume the following is given: Earth’s mass MEarth = 6x10^24 kg, Earth’s radius REarth = 6.378x10^6 m, and the gravitational constant G = 6.67x10^-11 Nm2/kg2.
A satellite is in a circular orbit around the Earth at an altitude of 3.78 106...
A satellite is in a circular orbit around the Earth at an altitude of 3.78 106 m.(Hint: Solve the parts in reverse order.) (a) Find the period of the orbit. h (b) Find the speed of the satellite. (c) Find the acceleration of the satellite. m/s2 toward the center of the earth
A satellite is in a circular orbit around the Earth at an altitude of 3.32 106...
A satellite is in a circular orbit around the Earth at an altitude of 3.32 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 106 m, and the mass of the Earth is 5.98 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s2 toward the...
A satellite is in a circular orbit around the Earth at an altitude of 3.84  106 m....
A satellite is in a circular orbit around the Earth at an altitude of 3.84  106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38  106 m, and the mass of the Earth is 5.98  1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s2 toward the center of the...
A satellite is in circular orbit at an altitude of 1800 km above the surface of...
A satellite is in circular orbit at an altitude of 1800 km above the surface of a nonrotating planet with an orbital speed of 3.7 km/s. The minimum speed needed to escape from the surface of the planet is 8.4 km/s, and G = 6.67 × 10-11 N · m2/kg2. The orbital period of the satellite is closest to 59 min. 83 min. 75 min. 67 min. 51 min.
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the...
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the orbit of the satellite is equal to 1.5 times the radius of Earth (RE = 6.378*106 m, ME = 5.98*1024 kg, G = 6.67*10-11 Nm2/kg2). (a) Find the orbital period of the satellite? (b) Find the orbital (tangential) velocity of the satellite.  (c) Find the total energy of the satellite?
A satellite is in circular orbit at an altitude of 1500 km above the surface of...
A satellite is in circular orbit at an altitude of 1500 km above the surface of a nonrotating planet with an orbital speed of 3.4 km/s. The minimum speed needed to escape from the surface of the planet is 8 km/s, and G = 6.67 × 10-11 N · m2/kg2. The orbital period of the satellite is closest to A)59 min. B)45 min. C)72 min. D)65 min. E)52 min.
Scientists want to place a 1000 kg satellite in a circular orbit around Venus. They want...
Scientists want to place a 1000 kg satellite in a circular orbit around Venus. They want the height of the orbit to be three times the radius of Venus. Mvenus = 4.867 x 1024 kg Rvenus = 6.050 x 106 m G = 6.67428 x 10-11 N-m2/kg2 A) What would be the force of gravity between Venus and the satellite? B) What would be the acceleration due to gravity at the satellite’s orbit? C) What would be the orbital speed...
A satellite is in a circular orbit around the Earth at an altitude of 1.66 106...
A satellite is in a circular orbit around the Earth at an altitude of 1.66 106 m. (a) Find the period of the orbit (in hrs). (Hint: Modify Kepler's third law: T2 = (4π2/GMS)r3 so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 106 m, and the mass of the Earth is 5.98 1024 kg.) (b) Find the speed of the satellite (in km/s). (c) Find the acceleration of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT