Question

(part 1 of 3) A satellite of mass 398 kg is launched from a site on...

(part 1 of 3) A satellite of mass 398 kg is launched from a site on the Equator into an orbit at 544 km above Earth’s surface. If the orbit is circular, what is the satellite’s speed in orbit? The gravitational constant is 6.67259 × 10^−11 N · m2/kg2 , the mass of the earth is 5.98 × 10^24 kg and its radius is 6.37 × 10^6 m. Answer in units of m/s.


(part 2 of 3) What is the orbital period of this satellite? Answer in units of h.


(part 3 of 3) What is the minimum energy necessary to place this satellite in orbit, assuming no air friction? Answer in units of J.

Homework Answers

Answer #1

Solution)

Part 1) speed,  v = sqrt(GM/r) = sqrt(6.67x10^-11*5.98x10^24/(6.37x10^6+ 544x10^3)) = 7595m/s (Ans)

======

Part 2)

We know,

GMm/r^2 = m*v^2/r = m*4π^2*r/T^2

so orbital period, T= sqrt(4π^2*r^3/GM) = sqrt(4π^2*(6.37x10^6+ 544x10^3)^3/(6.67x10^-11*5.98x10^24) = 910s =0.25 hrs (Ans)

=======

Part 3) Minimum Energy = GMm*(1/R - 1/r) + 1/2*m*v^2

= 6.67x10^-11*5.98x10^24*398*(1/(6.37x10^6) - 1/(6.37x10^6 + 544x10^3)) + 1/2*398*(7595)^2

= 9.89 x10^9J

=========

Good luck!:)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A satellite of mass 220 kg is launched from a site on Earth's equator into an...
A satellite of mass 220 kg is launched from a site on Earth's equator into an orbit at 210 km above the surface of Earth. (a) Assuming a circular orbit, what is the orbital period of this satellite? _____ s (b) What is the satellite's speed in its orbit? _____ m/s (c) What is the minimum energy necessary to place the satellite in orbit, assuming no air friction? _____ J
A satellite of mass m = 2.00 ×103 kg is launched into a circular orbit of...
A satellite of mass m = 2.00 ×103 kg is launched into a circular orbit of orbital period T = 4.00 hours. Newton's gravitational constant is G = 6.67 ×10−11 N∙m2/kg2, and the mass and radius of the Earth are respectively M⨁ = 5.97 ×1024 kg and r⨁ = 6.37 ×106 m. Answer the following questions. What is the total mechanical energy (kinetic energy + potential energy) of the satellite in orbit? Take the gravitational potential energy of the satellite...
A 200 kg satellite is placed in Earth’s orbit 200 km above the surface. The Radius...
A 200 kg satellite is placed in Earth’s orbit 200 km above the surface. The Radius of Earth is 6.37 x 106 m, and the Earth’s mass is 5.98 x 1024 kg. A) Assuming a circular orbit, how long does the satellite take to complete one orbit? B) What is the satellite’s speed?
A 4,000 kg satellite is traveling in a circular orbit 200 km above the surface of...
A 4,000 kg satellite is traveling in a circular orbit 200 km above the surface of the Earth. A 30.0 gram marble is dropped inside the satellite. What is the force of gravity on the marble as viewed by the observers on the Earth? (ME = 5.98 × 1024 kg, RE = 6.37 × 106 m, G = 6.67 × 10−11 N·m2/kg2) A 5,000 kg satellite is orbiting the Earth in a circular path. The height of the satellite above...
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the...
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the orbit of the satellite is equal to 1.5 times the radius of Earth (RE = 6.378*106 m, ME = 5.98*1024 kg, G = 6.67*10-11 Nm2/kg2). (a) Find the orbital period of the satellite? (b) Find the orbital (tangential) velocity of the satellite.  (c) Find the total energy of the satellite?
Consider a 355kg satellite in a circular orbit at a distance of 3.07 x 104 km...
Consider a 355kg satellite in a circular orbit at a distance of 3.07 x 104 km above the Earth’s surface. What is the minimum amount of work the satellite’s thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth’s surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 103 km and ME = 5.97 x 1024 kg respectively. The...
A satellite (mass m) is in circular orbit around Earth (mass M) with orbital period T....
A satellite (mass m) is in circular orbit around Earth (mass M) with orbital period T. What is the satellite’s distance r from the Earth’s center? Group of answer choices
An earth satellite remains in orbit at a distance of 1.7100×104 km from the center of...
An earth satellite remains in orbit at a distance of 1.7100×104 km from the center of the earth. The Universal Gravitational Constant is 6.67×10−11 N⋅m2/kg2 and the mass of the earth is 5.98×1024 kg. Part A What speed (in m/s) would the satellite have to maintain? Express your answer using three significant figures. Credit: 3 pts.
QUESTION 1 Part 1 Engineers wish to launch a satellite from the surface of the Moon....
QUESTION 1 Part 1 Engineers wish to launch a satellite from the surface of the Moon. What is the minimum speed the satellite must have to escape the Moon’s gravity – that is, what is the escape velocity at the surface of the Moon? The Moon has a mass of 7.3x10^22 kg and a radius of 1.7x10^6 m. a. 1700 m/s b. 5.7x10^6 m/s c. It depends on the mass of the satellite. d. 2400 m/s Part 2 The satellite...
1. A satellite is in a circular orbit about the earth (ME = 5.98 x 1024...
1. A satellite is in a circular orbit about the earth (ME = 5.98 x 1024 kg). The period of the satellite is 2.35 x 104 s. What is the speed at which the satellite travels? 2. Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 545 km above the earth’s surface, while that for satellite B is at a height of 787 km. Find the orbital speed for (a)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT