Question

A satellite is in a circular orbit around the Earth at an altitude of 1.66 106 m. (a) Find the period of the orbit (in hrs). (Hint: Modify Kepler's third law: T2 = (4π2/GMS)r3 so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 106 m, and the mass of the Earth is 5.98 1024 kg.) (b) Find the speed of the satellite (in km/s). (c) Find the acceleration of the satellite (in m/s2 toward the center of the earth).

Answer #1

A satellite is in a circular orbit around the Earth at an
altitude of 3.32 106 m. (a) Find the period of the orbit. (Hint:
Modify Kepler's third law so it is suitable for objects orbiting
the Earth rather than the Sun. The radius of the Earth is 6.38 106
m, and the mass of the Earth is 5.98 1024 kg.) h (b) Find the speed
of the satellite. km/s (c) Find the acceleration of the satellite.
m/s2 toward the...

A satellite is in a circular orbit around the Earth at an
altitude of 3.84 106 m.
(a) Find the period of the orbit. (Hint: Modify
Kepler's third law so it is suitable for objects orbiting the Earth
rather than the Sun. The radius of the Earth is
6.38 106 m, and the mass of the Earth is
5.98 1024 kg.)
h
(b) Find the speed of the satellite.
km/s
(c) Find the acceleration of the satellite.
m/s2 toward the center of the...

A satellite is in a circular orbit around the Earth at an
altitude of 3.78 106 m.(Hint: Solve the parts in reverse order.)
(a) Find the period of the orbit. h (b) Find the speed of the
satellite. (c) Find the acceleration of the satellite. m/s2 toward
the center of the earth

A satellite of mass 1525 kg is in circular orbit around Earth.
The radius of the orbit of the satellite is equal to 1.5 times the
radius of Earth (RE = 6.378*106 m, ME = 5.98*1024 kg, G =
6.67*10-11 Nm2/kg2). (a) Find the orbital period of the satellite?
(b) Find the orbital (tangential) velocity of the
satellite. (c) Find the total energy of the
satellite?

A satellite in a circular orbit around the earth with a radius
1.019 times the mean radius of the earth is hit by an incoming
meteorite. A large fragment (m = 69.0 kg) is ejected in the
backwards direction so that it is stationary with respect to the
earth and falls directly to the ground. Its speed just before it
hits the ground is 367.0 m/s.
a)Find the total work done by gravity on the satellite fragment.
RE 6.37·103 km;...

1. A satellite is in a circular orbit about the earth (ME = 5.98
x 1024 kg). The period of the satellite is 2.35 x 104 s. What is
the speed at which the satellite travels?
2. Two satellites are in circular orbits around the earth. The
orbit for satellite A is at a height of 545 km above the earth’s
surface, while that for satellite B is at a height of 787 km. Find
the orbital speed for (a)...

An Earth satellite is in a circular orbit at an altitude of 500
km. Explain why the work done by the gravitational force acting on
the satellite is zero. Using the work-energy theorem, what can you
say about the speed of the satellite?

A 160 kg satellite is orbiting on a circular orbit 7655 km above
the Earth's surface. Determine the speed of the satellite. (The
mass of the Earth is 5.97×1024
kg, and the radius of the Earth is 6370 km.)
(in km/s)

A 345 kg satellite is orbiting on a circular orbit 8955 km above
the Earth's surface. What is the gravitational acceleration at the
location of the satellite? (The mass of the Earth is
5.97×1024 kg, and the radius of the Earth is 6370
km.)?

A satellite is in a circular orbit about the earth (ME = 5.98 x
1024 kg). The period of the satellite is 1.04 x 104 s. What is the
speed at which the satellite travels

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 5 minutes ago

asked 20 minutes ago

asked 33 minutes ago

asked 39 minutes ago

asked 40 minutes ago

asked 52 minutes ago

asked 56 minutes ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago