Question

A heat engine operates in a Carnot cycle between 74.0°C and 342°C. It absorbs 21,100 J...

A heat engine operates in a Carnot cycle between 74.0°C and 342°C. It absorbs 21,100 J of energy every second from the hot reservoir. What is the mechanical power output (in kW) of this engine? Round your answer to 2 decimal places.

Homework Answers

Answer #1

Given the tempeature of the hot reservoir T1 = = 615K and the temperature of the cold reservoir T2 = = 347K. Also the amount of heat absorbed per second from the hot reservoir is,

The efficiency of the Carnot's heat engine is given by,

If W is the work done, then the efficiency can be written as,

Comparing both the equations, we get

The power is given by,

So the mechanical power output of the engine is 9.19kW.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Carnot engine absorbs 555 J from a reservoir at 415°C each cycle and discards 345...
A Carnot engine absorbs 555 J from a reservoir at 415°C each cycle and discards 345 J to a second reservoir. What is the thermal efficiency of the cycle? Round your answer to 3 decimal places.
A Carnot engine of efficiency 43% operates with a cold reservoir at 28°C and exhausts 1210...
A Carnot engine of efficiency 43% operates with a cold reservoir at 28°C and exhausts 1210 J of heat each cycle. What is the entropy change for the hot reservoir?
What is the maximum efficiency of a heat engine that operates between 440°C and 120°C? ____________________%...
What is the maximum efficiency of a heat engine that operates between 440°C and 120°C? ____________________% If this engine generates 2000 J of mechanical energy, how many calories does it absorb from the hot reservoir, and how many calories does it transfer into the cold reservoir? ___________________cal (hot reservoir) ________________________cal (cold reservoir)
A Carnot engine has a power output of 160 kW. The engine operates between two reservoirs...
A Carnot engine has a power output of 160 kW. The engine operates between two reservoirs at 20°C and 470°C. (a) How much energy enters the engine by heat per hour? (b) How much energy is exhausted by heat per hour?
A Carnot engine operates between two reservoirs maintained at 227C and 27C, respectively. If the desired...
A Carnot engine operates between two reservoirs maintained at 227C and 27C, respectively. If the desired output of the engine is 16kW, determine the cycle efficiency, the heat transfer rate from the high-temperature energy source, and the heat transfer rate to the low-temperature reservoir.
2) A heat engine operates between two fixed temperature reservoirs, TH = 127 0C, TC =...
2) A heat engine operates between two fixed temperature reservoirs, TH = 127 0C, TC = 7 0C. In each cycle 5 J are extracted from the hot reservoir and 4 J are deposited into the cold reservoir. [ 0 0C = 273 K] (a) How much work is performed by the engine per cycle ? (4) (b) What is the efficiency of the engine ? (4) (c) What is the entropy change of the hot reservoir during one cycle...
A Carnot engine operates between 550°C and 20°C baths and produces 300 kJ of energy in...
A Carnot engine operates between 550°C and 20°C baths and produces 300 kJ of energy in each cycle. Find the change in entropy of the (a) hot bath and (b) cold bath, in each Carnot cycle? What is the efficiency?
A refrigerator has a coefficient of performance of K=2.1. Each cycle, it absorbs 3.45×104 J of...
A refrigerator has a coefficient of performance of K=2.1. Each cycle, it absorbs 3.45×104 J of heat from the cold reservoir. The refrigerator is driven by a Carnot engine that has an efficiency of e=0.5. 1.During each cycle, how much heat flows into the Carnot engine? Express your answer in joules to three significant figures.
A Carnot engine has an efficiency of 35.4%. It operates between constant-temperature reservoirs differing in temperature...
A Carnot engine has an efficiency of 35.4%. It operates between constant-temperature reservoirs differing in temperature by 100 C°. In kelvins, what are (a)the temperature of the hot reservoir and (b) the temperature of the cold reservoir?
We have a Carnot engine operating between a hot reservoir A and a cold reservoir B....
We have a Carnot engine operating between a hot reservoir A and a cold reservoir B. The work produced in the engine is used to power a flywheel. The hot reservoir is boiling water at p0 = 1 bar and Ta = 373K. The cold reservoir is a block of ice at p0 and Tb = 273K (latent heat = 3.3E5 J/kg). For the flywheel we know that Inertiamoment = 2kg m^2, mass = 6kg, c = 418J/kg K. Final...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT