Question

A Carnot engine operates between two reservoirs maintained at 227C and 27C, respectively. If the desired...

A Carnot engine operates between two reservoirs maintained at 227C and 27C, respectively. If the desired output of the engine is 16kW, determine the cycle efficiency, the heat transfer rate from the high-temperature energy source, and the heat transfer rate to the low-temperature reservoir.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Carnot engine has an efficiency of 35.4%. It operates between constant-temperature reservoirs differing in temperature...
A Carnot engine has an efficiency of 35.4%. It operates between constant-temperature reservoirs differing in temperature by 100 C°. In kelvins, what are (a)the temperature of the hot reservoir and (b) the temperature of the cold reservoir?
2) A heat engine operates between two fixed temperature reservoirs, TH = 127 0C, TC =...
2) A heat engine operates between two fixed temperature reservoirs, TH = 127 0C, TC = 7 0C. In each cycle 5 J are extracted from the hot reservoir and 4 J are deposited into the cold reservoir. [ 0 0C = 273 K] (a) How much work is performed by the engine per cycle ? (4) (b) What is the efficiency of the engine ? (4) (c) What is the entropy change of the hot reservoir during one cycle...
A Carnot engine has a power output of 160 kW. The engine operates between two reservoirs...
A Carnot engine has a power output of 160 kW. The engine operates between two reservoirs at 20°C and 470°C. (a) How much energy enters the engine by heat per hour? (b) How much energy is exhausted by heat per hour?
A heat engine that operates at steady state between two reservoirs at TH = 750◦C and...
A heat engine that operates at steady state between two reservoirs at TH = 750◦C and TL = 15◦C, has a heat intake of 0.1 MW and rejects 50 kW of heat to the low- temperature environment. Determine the actual power produced, the thermal efficiency, the entropy generation rate. In addition, calculate the maximum possible output power and efficiency. Assume the reservoirs are isolated systems.
Consider a Carnot-type engine driven by two heat reservoirs at 450 K and 280 K, respectively....
Consider a Carnot-type engine driven by two heat reservoirs at 450 K and 280 K, respectively. Heat can flow from the hot reservoir to the engine at 80,000 BTU/hr (BTU=British Thermal Unit= 1054 J). What is the maximum efficiency of this engine? What is the maximum power, in watts, that can be generated by the engine?
The hot and cold reservoirs of a Carnot engine are 273°C and 71.7°C respectively. The temperature...
The hot and cold reservoirs of a Carnot engine are 273°C and 71.7°C respectively. The temperature of the hot reservoir is raised by 43°C in order to increase the efficiency of the engine. (a) What is the efficiency after the increase in temperature? .41 Incorrect: Your answer is incorrect. % (b) Instead of raising the temperature of the hot reservoir, if the temperature of the cold reservoir is decreased by 43°C, what would be the efficiency of the engine? %
A Carnot engine is operated between constant temperature reservoirs, TC and TH. The operator wishes to...
A Carnot engine is operated between constant temperature reservoirs, TC and TH. The operator wishes to increases the efficiency of the engine. If only one reservoir can be changed by a given amount for either reservoir, which is better: lowering the cold reservoir or raising the hot reservoir? (Hint: Think about how the efficiency changes when you change one of the two temperature reservoirs.)
A heat engine is assumed to operate on a Carnot cycle. It receives 600kJ heat from...
A heat engine is assumed to operate on a Carnot cycle. It receives 600kJ heat from a high temperature reservoir at 600oC and rejects heat to a low temperature reservoir at 20oC. a. Calculate the thermal efficiency of the cycle. b. What is QL? c. What is the net work produced by this cycle? d. Does this process violate Kelvin-Plank statement? Explain. e. An inventor claimed that he built a heat engine operating between the same reservoirs that give a...
The exhaust temperature of a heat engine is 290 ∘C∘C . What must be the high...
The exhaust temperature of a heat engine is 290 ∘C∘C . What must be the high temperature if the Carnot efficiency is to be 23 %% ? Express your answer using two significant figures. A heat engine uses a heat source at 500 ∘C∘C and has an ideal (Carnot) efficiency of 28 %% . To increase the ideal efficiency to 42 %% , what must be the temperature of the heat source? An ideal Carnot engine is operated between a...
A heat engine operates in a Carnot cycle between 74.0°C and 342°C. It absorbs 21,100 J...
A heat engine operates in a Carnot cycle between 74.0°C and 342°C. It absorbs 21,100 J of energy every second from the hot reservoir. What is the mechanical power output (in kW) of this engine? Round your answer to 2 decimal places.