Question

2) A heat engine operates between two fixed temperature reservoirs, TH = 127 0C, TC =...

2) A heat engine operates between two fixed temperature reservoirs, TH = 127 0C, TC = 7 0C. In each cycle 5 J are extracted from the hot reservoir and 4 J are deposited into the cold reservoir. [ 0 0C = 273 K] (a) How much work is performed by the engine per cycle ? (4) (b) What is the efficiency of the engine ? (4) (c) What is the entropy change of the hot reservoir during one cycle ? (4) (d) What is the entropy change of the cold reservoir during one cycle ? (4) (e) What is the entropy change of the engine itself during one cycle ? Is the engine reversible of irreversible ? (3) (f) What is the efficiency of an ideal (Carnot) engine operating between the same two reservoirs?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Carnot engine is operated between constant temperature reservoirs, TC and TH. The operator wishes to...
A Carnot engine is operated between constant temperature reservoirs, TC and TH. The operator wishes to increases the efficiency of the engine. If only one reservoir can be changed by a given amount for either reservoir, which is better: lowering the cold reservoir or raising the hot reservoir? (Hint: Think about how the efficiency changes when you change one of the two temperature reservoirs.)
A Carnot engine has an efficiency of 35.4%. It operates between constant-temperature reservoirs differing in temperature...
A Carnot engine has an efficiency of 35.4%. It operates between constant-temperature reservoirs differing in temperature by 100 C°. In kelvins, what are (a)the temperature of the hot reservoir and (b) the temperature of the cold reservoir?
The hot and cold reservoirs of a Carnot engine are 273°C and 71.7°C respectively. The temperature...
The hot and cold reservoirs of a Carnot engine are 273°C and 71.7°C respectively. The temperature of the hot reservoir is raised by 43°C in order to increase the efficiency of the engine. (a) What is the efficiency after the increase in temperature? .41 Incorrect: Your answer is incorrect. % (b) Instead of raising the temperature of the hot reservoir, if the temperature of the cold reservoir is decreased by 43°C, what would be the efficiency of the engine? %
Suppose that there are two very large reservoirs of water, one at a temperature of 87.0...
Suppose that there are two very large reservoirs of water, one at a temperature of 87.0 ∘C and one at a temperature of 19.0 ∘C. These reservoirs are brought into thermal contact long enough for 40210 J of heat to flow from the hot water to the cold water. Assume that the reservoirs are large enough so that the temperatures do not change significantly. What is the total change in entropy, Δ?tot, resulting from this heat exchange between the hot...
A Carnot engine of efficiency 43% operates with a cold reservoir at 28°C and exhausts 1210...
A Carnot engine of efficiency 43% operates with a cold reservoir at 28°C and exhausts 1210 J of heat each cycle. What is the entropy change for the hot reservoir?
10)When a metal bar is temporarily connected between a hot reservoir at Th and a cold...
10)When a metal bar is temporarily connected between a hot reservoir at Th and a cold reservoir at Tc, the energy transferred by heat from the hot reservoir to the cold reservoir is Qh. In this irreversible process, find expressions for the change in entropy of the following. (Use any variable or symbol stated above as necessary.) (a) the hot reservoir ΔSh =      (b) the cold reservoir ΔSc =      (c) the Universe ΔSU =   12)A Carnot engine operates...
The following heat engine operates between heat reservoirs at 750 K and 300 K, respectively, and...
The following heat engine operates between heat reservoirs at 750 K and 300 K, respectively, and produces power of 95,000 kW. (a) If the engine operates all reversible, calculate the η, QH, and QC. (b) In practice, due to the irreversibility, the efficiency η = 0.35. If QH, TH and TC remain the same, calculate the produced work, lost work Wlost, and total entropy generation (ΔS).
Consider a heat engine which does 500 MJ of work over a 3 hour period and...
Consider a heat engine which does 500 MJ of work over a 3 hour period and operates between a hot reservoir of Th = 1250°C and a cold reservoir of Tc = 30.0°C. The engine is ideal and therefore running at its maximum efficiency. Show that the efficiency is 80.0%? How much heat: Comes from the hot reservoir? Is added to the cold reservoir? What is the rate of entropy change of the hot reservoir? Comment, with reasons, on the...
Consider a heat engine which does 500 MJ of work over a 3 hour period and...
Consider a heat engine which does 500 MJ of work over a 3 hour period and operates between a hot reservoir of Th = 1250°C and a cold reservoir of Tc = 30.0°C. The engine is ideal and therefore running at its maximum efficiency. [4 marks] Show that the efficiency is 80.0%? [6 marks] How much heat: Comes from the hot reservoir? Is added to the cold reservoir? [5 marks] What is the rate of entropy change of the hot...
Question 3) Which one of the following statements concerning the efficiency of a Carnot heat engine...
Question 3) Which one of the following statements concerning the efficiency of a Carnot heat engine is true? A) The efficiency of an irreversible engine is typically greater than that of a reversible engine operating under the same circumstances. B) The efficiency is dependent on whether an ideal or non-ideal gas is used. C) One hundred percent efficiency is possible if the engine can be operated in reverse. D) The efficiency is not dependent on the temperatures of the hot...