Question

(d) In a closed industrial process 2 .5 kg of water at an initial temperature of...

(d) In a closed industrial process 2 .5 kg of water at an initial temperature of 15°C is continually stirred whilst being heated. If the net heat transferred to the system is 3 kJ and the final temperature of the water is 75°C, determine:

i.The internal energy change of the water

ii.The work transferred (stating the direction-in or out)of the mechanical stirrer.

iii.The additional heat flow required for the same temperature increase if there were no work transfer.

For parts (d), assume no heat loss and take: C=4.19kJ/kgK, L=2260kJ/kg for water)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Water of mass 2 kg in a closed, rigid tank is initially in the form of...
Water of mass 2 kg in a closed, rigid tank is initially in the form of a twophase liquid-vapor mixture. The initial temperature is 50° C. The mixture is heated until the tank contains only saturated vapor at 110° C. (i) Find the initial pressure, in kPa. (ii) Find the work for the process, in kJ. (iii) Find the heat transfer for the process, in kJ.
A gas contained in a closed rigid container is heated from initial temperature and pressure of...
A gas contained in a closed rigid container is heated from initial temperature and pressure of 270C and 2 bar to a final pressure of 12 bar. Calculate final temperature, Work done, Heat transfer and change in Internal Energy. (Take Cv as 0.873 kJ/kg K. and Mass of the gas = 1kg)
Water, initially saturated vapor at 14.6 bar, fills a closed, rigid container. The water is heated...
Water, initially saturated vapor at 14.6 bar, fills a closed, rigid container. The water is heated until its temperature is 200°C. For the water, determine the heat transfer, in kJ/kg. Kinetic and potential energy effects can be ignored.
A) 1 kg of air with a pressure of 13 bar and a temperature of 125...
A) 1 kg of air with a pressure of 13 bar and a temperature of 125 ° C is heated as isobar up to 550 ° C. a) Work done during heating, b) Internal energy and enthalpy change, c) Calculate the amount of heat consumed. (R = 287 j / kgK, x = 1,4) B) An ideal gas with a pressure of 1 bar and a volume of 0.5m³ is compressed isothermally up to 17 bar pressure. Calculate the volume...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from saturated vapor at 500 kPa to a temperature of 260°C. Kinetic and potential energy effects are negligible. For the water: a) Evaluate the work, in kJ, b) If the work is 30 kJ, evaluate the heat transfer, in kJ, c) If the heat transfer is negligible, evaluate the entropy production in kJ/K d) Determine if the process is reversible, irreversible, or impossible.
A closed, rigid, 0.40 m3 tank is filled with 12 kg of water. The initial pressure...
A closed, rigid, 0.40 m3 tank is filled with 12 kg of water. The initial pressure is p1 = 20 bar. The water is cooled until the pressure is p2= 4 bar. Determine the initial quality, x1, and the heat transfer, in kJ.
1. In an industrial process, a tank containing 200 liters of water at 372 K at...
1. In an industrial process, a tank containing 200 liters of water at 372 K at a constant pressure is used as a thermal energy storage device. The device is used to heat a residential space that is maintained 293 K. There is a negligible change in the volume of the water. The water is stirred during this process to maintain a uniformly distributed temperature. During the process, the convective heat transfer coefficient between the water and the space is...
Water at 15°C enters a tube of 2 cm of diameter with flow rate 3953 kg/h....
Water at 15°C enters a tube of 2 cm of diameter with flow rate 3953 kg/h. Assume the ratio L/D>10, and the wall temperature is constant at 80-C. The outlet temperature is 50°C The properties of water at the film temperature are density rho = p = 985 kg/m3, specific heat Cp = 4180 J/kgk, conductivity k = 0.651 W/mK, dynamic viscosity mu= u = 4.71 × 10- kg/ms, At the wall temperature of 80°C we have dynamic viscosity muw=...
1-kg water in a frictionless piston-cylinder device is initially at 250°C and 300 kPa (state 1)....
1-kg water in a frictionless piston-cylinder device is initially at 250°C and 300 kPa (state 1). A total of 700 kJ of work is done ON the water in order to isothermally reduce its volume to 1/20 of its initial volume (state 2). Determine the magnitude and direction of the heat transfer involved in this process. Answer: -1147 kJ.
A system consisting of 2 kg of water initially at 130°C, 10 bar undergoes an internally...
A system consisting of 2 kg of water initially at 130°C, 10 bar undergoes an internally reversible, isothermal expansion during which there is energy transfer by heat into the system of 700 kJ. Determine the final pressure, in bar, and the work by the system, in kJ.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT