Question

1. In an industrial process, a tank containing 200 liters of water at 372 K at...

1. In an industrial process, a tank containing 200 liters of water at 372 K at a constant pressure is used as a thermal energy storage device. The device is used to heat a residential space that is maintained 293 K. There is a negligible change in the volume of the water. The water is stirred during this process to maintain a uniformly distributed temperature. During the process, the convective heat transfer coefficient between the water and the space is 12.0 W/(m2K) and the surface area equals 5.0 m2. The residential space remains at a constant temperature of 293 K and the thermal storage unit can be used until its temperature reaches 300 K. Neglect the work associated with stirring the tank and thermal radiation heat transfer.

         a) How long will the thermal energy storage unit provide energy to the system?

         b) Calculate the total heat flow in Joules that were added to the residential space from

               the thermal energy storage device.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(d) In a closed industrial process 2 .5 kg of water at an initial temperature of...
(d) In a closed industrial process 2 .5 kg of water at an initial temperature of 15°C is continually stirred whilst being heated. If the net heat transferred to the system is 3 kJ and the final temperature of the water is 75°C, determine: i.The internal energy change of the water ii.The work transferred (stating the direction-in or out)of the mechanical stirrer. iii.The additional heat flow required for the same temperature increase if there were no work transfer. For parts...
A closed, rigid steel tank contains 1 lbm of water, initially at 260 F and a...
A closed, rigid steel tank contains 1 lbm of water, initially at 260 F and a quality of 60%. The tank is fitted with a paddle wheel and the water is stirred until the temperature is 350 F. The tank is well insulated on the outside and the steel is in thermal equilibrium with the water. The mass of the steel tank itself (not including water) is 60 lbm and the specific heat of the tank is 0.115 Btu/lbm·R. Changes...
A closed, rigid steel tank contains 1 lbm of water, initially at 260F and a quality...
A closed, rigid steel tank contains 1 lbm of water, initially at 260F and a quality of 60%. The tank is fitted with a paddle wheel and the water is stirred until the temperature is 350F. The tank is well insulated on the outside and the steel is in thermal equilibrium with the water. The mass of the steel tank itself (not including water) is 60 lbm and the specific heat of the tank is 0.115 Btu/lbm·R. Changes in kinetic...
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is...
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is connected by a valve to a large supply line carrying air at 295 K, 15 bar. The valve is opened only as long as required to fill the tank with air to a pressure of 15 bar. Finally, the air in the tank is at 310 K. The copper tank, which has a mass of 20 kg, is at the same temperature as the...
150 grams of boiling water (temperature 100°C, heat capacity 4.2 J/gram/K) are poured into an aluminum...
150 grams of boiling water (temperature 100°C, heat capacity 4.2 J/gram/K) are poured into an aluminum pan whose mass is 970 grams and initial temperature 25°C (the heat capacity of aluminum is 0.9 J/gram/K). (a) After a short time, what is the temperature of the water? (b) What simplifying assumptions did you have to make? The thermal energy of the aluminum doesn't change. Energy transfer between the system (water plus pan) and the surroundings was negligible during this time. The...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from an initial volume of 48 m3 to a final volume of 30 m3 . During the process, the piston supplies 1.2 MJ of work to the gas. The gas has a constant specific heat at constant volume of 1.80 kJ/(kg∙K) and a specific gas constant of 1.48 kJ/(kg∙K). Neglect potential and kinetic energy changes. a. Determine the initial specific volume of the gas in...
0.100 kg of water at 10∘C is added to 0.300 kg of soup at 50∘C. Assume...
0.100 kg of water at 10∘C is added to 0.300 kg of soup at 50∘C. Assume complete transfer of thermal energy from soup to the water, with no transfer of energy to the environment. Specific heat of water is 4180 J/kg⋅∘C. The soup has the same specific heat as water. A) Determine the final temperature? Express in Celsius B) Estimate the entropy change of this water-soup system during the process using the actual temperatures to determine the heat transferred and...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from saturated vapor at 500 kPa to a temperature of 260°C. Kinetic and potential energy effects are negligible. For the water: a) Evaluate the work, in kJ, b) If the work is 30 kJ, evaluate the heat transfer, in kJ, c) If the heat transfer is negligible, evaluate the entropy production in kJ/K d) Determine if the process is reversible, irreversible, or impossible.
A house with 200-m2 floor space is heated with geothermal water flowing through pipes laid in...
A house with 200-m2 floor space is heated with geothermal water flowing through pipes laid in the ground under the floor. The walls of the house are 4 m high, and there are 8 single-paned windows in the house that are 1.2 m wide and 1.8 m high. The house has R-4 insulation (where R= 1/U is the overall unit thermal resistance(the R-value) and U is the overall heat transfer coefficient) in the walls and R-5 on the ceiling. The...
Calculate the entropy production for the piston-cylinder power producing cycle you analyzed in, problem 1. Problem...
Calculate the entropy production for the piston-cylinder power producing cycle you analyzed in, problem 1. Problem 1: A piston cylinder device has a volume of 0.04 m3 and initially contains air at 293 K and 1 bar. This device is used to perform a cycle in which the gas is heated at a constant volume until the temperature reaches 1000 K. The air is allowed to expand following an isothermal process until the volume is 3.5 times the original volume....