Question

Determine the Convergence or Divergence of the sequence with the given n- th term. If the...

Determine the Convergence or Divergence of the sequence with the given n- th term. If the converges find the limit.

a.) an= (-3/7)n+4

b.) an= nsin(1/n)

c.) an= cos n?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Determine the convergence or divergence of the sequence with given ??h term (a) an=4-5/(n^2+1) (b)...
1. Determine the convergence or divergence of the sequence with given ??h term (a) an=4-5/(n^2+1) (b) an= 1/√? (c) an= (sin√?)/ √?
For Xn given by the following, prove the convergence or divergence of the sequence (Xn) with...
For Xn given by the following, prove the convergence or divergence of the sequence (Xn) with a formal proof, clearly and neatly: a) Xn = n2/(2n2+1) b) Xn = (-1)n/(n+1) c) Xn = sin(n)/(n2+1)
Determine the convergence/divergence of the following series using the integral test: a.) ∑= (1)/n(In(n))^2 (Upper limit...
Determine the convergence/divergence of the following series using the integral test: a.) ∑= (1)/n(In(n))^2 (Upper limit of sigma is ∞ ,and the lower limit of sigma is n=2) b.) ∑ (n-4)/(n^2-2n+1) (Upper limit of sigma is ∞ and the lower limit of the sigma is n=2 c.)∑ (n)/(n^2+1) (Upper limit of sigma ∞ and the lower limit sigma is n=1) d.) ∑ e^-n^2 (Upper limit of sigma ∞ and the lower limit sigma is n=1)
Using the definition of convergence of a sequence, prove that the sequence converges to the proposed...
Using the definition of convergence of a sequence, prove that the sequence converges to the proposed limit. lim (as n goes to infinity) 1/(n^2) = 0
Use the Monotone Convergence Theorem to show that each sequence converges. a)an= -(2/3)^n b)an= 1+ 1/n...
Use the Monotone Convergence Theorem to show that each sequence converges. a)an= -(2/3)^n b)an= 1+ 1/n c) 2/(-n)^2
1. Find the limit of the sequence whose terms are given by an= (n^2)(1-cos(5.6/n)) 2. for...
1. Find the limit of the sequence whose terms are given by an= (n^2)(1-cos(5.6/n)) 2. for the sequence an= 2(an-1 - 2) and a1=3 the first term is? the second term is? the third term is? the forth term is? the fifth term is?
Use the ratio test to determine convergence or divergence. If the ratio test is inconclusive, use...
Use the ratio test to determine convergence or divergence. If the ratio test is inconclusive, use another method to determine convergence or divergence. ∞ (−1)n(n!)2 / (7n)! n = 1 Its the series from 1 to infinity of (-1)^n times (n!)^2 divided by (7n)!
1) Determine if the sequence converges or Diverges. If it converges find the limit. an=n2*(e-n)
1) Determine if the sequence converges or Diverges. If it converges find the limit. an=n2*(e-n)
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n...
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n = 1 Step 1 To decide whether ∞ (−1)n 8n − 5 9n + 5 n = 1 converges, we must find lim n → ∞ 8n − 5 9n + 5 . The highest power of n in the fraction is 1    1 . Step 2 Dividing numerator and denominator by n gives us lim n → ∞ 8n − 5 9n +...
Determine the convergence or divergence if each integral by using a comparison function. Show work using...
Determine the convergence or divergence if each integral by using a comparison function. Show work using the steps below: A. Indicate the comparison function you are using. B. Indicate if your comparison function is larger or smaller than the original function. C. Indicate if your comparison integral converges or diverges. Explain why. D. State if the original integral converges or diverges. If it converges, you don’t need to give the value it converges to. 11. integral from 1 to infinity...