Question

1. You are to do a preliminary design study for a small demonstration steam turbine power...

1. You are to do a preliminary design study for a small demonstration steam turbine power plant.
- Steam will be provided by a small steam generator fired by natural gas.   - Your system will take in steam at 30 bar and 400 oC.
- The steam passes through a two stage turbine. At a pressure of 10 bars, the steam leaves the first stage of the turbine and will pass through a reheat loop in the steam generator which will boost the temperature back up to 400 oC at this pressure. The steam will then enter the second stage of the turbine.
- When the steam leaves the turbine, the quality should be at least 95% at the turbine exit / condenser inlet.
- The design condenser pressure is 0.70 bar.   
- Heat is removed from the condenser and rejected to the environment through a cooling tower.
a) Assuming isentropic expansion, what are the temperature, enthalpy, and entropy of the steam when it leaves the first stage of the turbine? (5 pts)

b) What are the enthalpy and the entropy of the steam as it leaves the reheater and enters the second stage of the turbine? How much heat (kJ/kg) goes into the steam in the reheat process? (10 pts)

c) Based on an isentropic expansion, what will the quality be at the exit? Will it meet this design limit? (10 pts)
For the following parts use the design turbine power output of 2.5 kW.
d) What mass flow rate is required? (10 pts)

e) At what rate must heat be produced by natural gas burners in the steam generator to produce the steam at the turbine inlet, and how much heat must be produced to reheat the steam between the stages? For a heating rate range of 950-1150 BTU/scf and a cost of $8 per 100 cubic feet, what is the fuel cost per hour to run this unit? (10 pts)

f) What is the feed water pump power demand, and what is the BWR? (10 pts)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and...
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and low pressure turbines at 500oC. The maximum and minimum pressures of the cycle are 10 MPa and 10 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The isentropic efficiencies of the high-pressure...
A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is...
A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is T1 = 400 oC. This corresponds to inlet enthalpy per unit mass of h1 = 3121 kJ/kg. Exit pressure of the steam is p2 = 101 kPa absolute. Exit steam temperature is T2 = 100 oC. This corresponds to exit enthalpy per unit mass of h2 = 2676 kJ/kg. Inlet speed of the steam is V1 = 15 m/s and exit speed is V2...
Water is the working fluid in a Rankine cycle with reheat. Superheated vapor enters the turbine...
Water is the working fluid in a Rankine cycle with reheat. Superheated vapor enters the turbine at 10 MPa, 520°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 520°C. The pump and each turbine stage have an isentropic efficiency of 70%. Determine for the cycle: (a) the heat addition, in kJ per kg of steam entering the first-stage turbine. (b) the percent thermal efficiency. (c) the magnitude...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
A steam power plant operates with a high pressure of 4 MPa and has a boiler...
A steam power plant operates with a high pressure of 4 MPa and has a boiler exit at 600C recieving heat from 700C reservoir. The ambient air at 20C provides cooling to maintain the water/vapor mixture in the condenser at 60C. All components are ideal (reversible) except the turbine which has an efficientcy 92% of a reversible, isentropic process. other than that the irreversibility of the turbine, the power plant can be considered as a Rankine cycle. Determine the following...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler and the condenser are 5000 kPa and 40 kPa, respectively. The temperatures at the inlet of the turbine and at the inlet of the pump are 500oC and 70oC, respectively. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible. If the mass flow rate of steam is 10 kg/s. Determine (a) the heat transfer rate in the boiler,...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 17 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...
QUESTION 5 A steam power plant is designed to operate on a reheat Rankine cycle to...
QUESTION 5 A steam power plant is designed to operate on a reheat Rankine cycle to produce 115 MW of a net power output. Due to metallurgical limitation, the high-pressure turbine is limited to operate at maximum pressure and temperature of 15 MPa and 650°C, respectively. The lowpressure turbine is to operate at maximum pressure and temperature of 3.5 MPa, and 500°C, respectively. Both high and low pressure turbines have maximum isentropic efficiency of 87 percent. The maximum reheat pressure...
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55%...
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55% with a flowrate of steam of 2 kg/s.  Heat is supplied to the boiler of 2500 kJ/kg. The pump takes in saturated liquid water at 100 kPa and has an exit pressure of 10 MPa.  Determine: the exit temperature of the pump (oC)  (3 pts) the work of the turbine (kW) (3 pts) the heat exhausted from the condenser (kJ/s) (3 pts)
Consider a cogeneration power plant that is modified with reheat and that produces 3 MW of...
Consider a cogeneration power plant that is modified with reheat and that produces 3 MW of power and supplies 7 MW of process heat. Steam enters the high pressure turbine at 8 MPa and 500 C and expands to a pressure of 1 MPa. At this pressure, part of the steam is extracted from the turbine and routed to the process heater, while the remainder is reheated to 500 C and expanded in the low pressure turbine to the condenser...