Question

A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is...

A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is T1 = 400 oC. This corresponds to inlet enthalpy per unit mass of h1 = 3121 kJ/kg. Exit pressure of the steam is p2 = 101 kPa absolute. Exit steam temperature is T2 = 100 oC. This corresponds to exit enthalpy per unit mass of h2 = 2676 kJ/kg. Inlet speed of the steam is V1 = 15 m/s and exit speed is V2 = 60 m/s. Axis of the steam turbine is horizontal. Time-rate of heat loss through the walls of the turbine is Q = 7600 kJ/h. The mass flow rate of steam through the turbine is 0.5 kg/s.

a) If the power extracted by the turbine is Pactual = 200 kW, what is the amount of power loss (expressed in kW) due to viscous effects?

b) If there would be no viscous losses, what would be the ideal power, Pideal, extracted by the turbine (in kW)?

c) What is the coefficient of efficiency, ?, of the turbine?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with keeping all other parameters unchanged: A. None of the answers. B. Decreases the heat added at high temperature. C. Increases the thermal efficiency of the cycle. D. Decreases the thermal efficiency of the cycle. 1 points    QUESTION 2 The maximum thermal efficiency of the Rankine cycle power plant is achieved when: A. it works on Carnot heat engine cycle. B. the pump work...
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s...
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s and the exit conditions are 20 kPa, 95% quality, and 60 m/s. The mass flow rate of the steam is 15 kg/s. Find: a) The change in kinetic energy of the steam, (5 points) b) The power output, and (5 points) c) The turbine inlet area. (5 points)
Steam at 4.5 MPa and 500 C enters the turbine with a velocity of 60 m/s...
Steam at 4.5 MPa and 500 C enters the turbine with a velocity of 60 m/s and its mass flow rate is 5,000 kg/h. The steam leaves the turbine at a point 3m below the turbine inlet with a velocity of 350 m/s. The heat loss from the turbine is 100,000 kJ/hr and the shaft work produced is 950hp. A small portion of the exhaust steam from the turbine is passed through a throttling valve and discharges at atmospheric pressure....
1. You are to do a preliminary design study for a small demonstration steam turbine power...
1. You are to do a preliminary design study for a small demonstration steam turbine power plant. - Steam will be provided by a small steam generator fired by natural gas.   - Your system will take in steam at 30 bar and 400 oC. - The steam passes through a two stage turbine. At a pressure of 10 bars, the steam leaves the first stage of the turbine and will pass through a reheat loop in the steam generator which...
A steam turbine has an inlet of 3 kg/s water at 1.2 MPa, 500°C with velocity...
A steam turbine has an inlet of 3 kg/s water at 1.2 MPa, 500°C with velocity of 16 m/s. The exit is at 150 kPa, 250°C and very low velocity. Find the power produced and the rate of entropy generation.
P2) Steam flows steadily through an adiabatic turbine in a power plant. The inlet conditions of...
P2) Steam flows steadily through an adiabatic turbine in a power plant. The inlet conditions of the steam are 6 MPa, 400 °C and 119 cm2 . The exit conditions are 40 kPa, 92 percent quality, 50 m/s and 20 kg/s. Determine the power output.
A steam turbine with an isentropic efficiency of 95 % has an inlet state of 500°C...
A steam turbine with an isentropic efficiency of 95 % has an inlet state of 500°C and 4 MPa. At the exit, the pressure is 200 kPa. The exit temperature of the steam (in °C) is: a. 163.7 b. 139.8 c. 131.4 d. 110.3 e. 812.8
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is...
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is 1523.5 kW. Determine the isentropic efficiency of the turbine. Entrance conditions: 3 MPa and 400°C Exit conditions: 30 kPa
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is...
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is 1523.5 kW. Determine the isentropic efficiency of the turbine. Entrance conditions: 3 MPa and 400°C Exit conditions: 30 kPa
A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa,...
A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa, 700°C and the other flow is 15 kg/s at 800 kPa, 500°C. The exit state is 10 kPa, with a quality of 96%. The actual power output is 22MW. A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa, 700°C and the other flow is 15 kg/s at 800 kPa, 500°C. The exit state is 10 kPa, with...