Question

A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is...

A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is T1 = 400 oC. This corresponds to inlet enthalpy per unit mass of h1 = 3121 kJ/kg. Exit pressure of the steam is p2 = 101 kPa absolute. Exit steam temperature is T2 = 100 oC. This corresponds to exit enthalpy per unit mass of h2 = 2676 kJ/kg. Inlet speed of the steam is V1 = 15 m/s and exit speed is V2 = 60 m/s. Axis of the steam turbine is horizontal. Time-rate of heat loss through the walls of the turbine is Q = 7600 kJ/h. The mass flow rate of steam through the turbine is 0.5 kg/s.

a) If the power extracted by the turbine is Pactual = 200 kW, what is the amount of power loss (expressed in kW) due to viscous effects?

b) If there would be no viscous losses, what would be the ideal power, Pideal, extracted by the turbine (in kW)?

c) What is the coefficient of efficiency, ?, of the turbine?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s...
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s and the exit conditions are 20 kPa, 95% quality, and 60 m/s. The mass flow rate of the steam is 15 kg/s. Find: a) The change in kinetic energy of the steam, (5 points) b) The power output, and (5 points) c) The turbine inlet area. (5 points)
Steam at 4.5 MPa and 500 C enters the turbine with a velocity of 60 m/s...
Steam at 4.5 MPa and 500 C enters the turbine with a velocity of 60 m/s and its mass flow rate is 5,000 kg/h. The steam leaves the turbine at a point 3m below the turbine inlet with a velocity of 350 m/s. The heat loss from the turbine is 100,000 kJ/hr and the shaft work produced is 950hp. A small portion of the exhaust steam from the turbine is passed through a throttling valve and discharges at atmospheric pressure....
P2) Steam flows steadily through an adiabatic turbine in a power plant. The inlet conditions of...
P2) Steam flows steadily through an adiabatic turbine in a power plant. The inlet conditions of the steam are 6 MPa, 400 °C and 119 cm2 . The exit conditions are 40 kPa, 92 percent quality, 50 m/s and 20 kg/s. Determine the power output.
A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa,...
A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa, 700°C and the other flow is 15 kg/s at 800 kPa, 500°C. The exit state is 10 kPa, with a quality of 96%. The actual power output is 22MW. A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa, 700°C and the other flow is 15 kg/s at 800 kPa, 500°C. The exit state is 10 kPa, with...
13)  A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters...
13)  A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters the turbine at a velocity of 3000 m/min, an elevation of 5 m and a specific enthalpy of 2787 kJ/kg. It leaves the turbine at a velocity of 6000 m/min, an elevation of 1 m and a specific enthalpy of 2259 kJ/kg. Heat losses from the turbine to the surroundings amount to 16736 kJ/h. Determine the power output of the turbine. 14) 12 kg...
Steam with pressure 6 MPA and temperature 500 ⁰C expands in an adiabatic turbine to saturated...
Steam with pressure 6 MPA and temperature 500 ⁰C expands in an adiabatic turbine to saturated steam and a pressure of 0,3 MPA. Kinetic energy and potential energy is neglected. Determine work produced, entropi generated and exergy destroyed for the turbine. Assume surrounding to 0,1 MPa och 25 ⁰C.
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at 0.1 bar. The isentropic efficiency of the turbine is 94.7%. Assuming the kinetic and potential energy effects to be negligible, determine: (a) Work output, in kJ/kg, (b) The temperature at the exit of the turbine, in °C, and (c) The rate of entropy production within the turbine, in kJ/K per kg of steam flowing through the turbine. (All steps required – Given/Find/Schematic/Engineering Model/Analysis) THANK...
Consider now a turbine(Q=0) that operates with N2 steam with T1 = 753.15K and P1 =...
Consider now a turbine(Q=0) that operates with N2 steam with T1 = 753.15K and P1 = 6 bar and P2 = 1 bar. The efficiency is 80% and the molar flowrate is (note not mass flow rate) is 200 mol/s. The inlet velocity is 30 m/s and the exit velocity is 120 m/s. The inlet is 6 m above the base of the turbine and the exit is 2 m above the base.   a. Determine the output of the turbine...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the nozzle exit. (ii) If the inlet area is 0.1 m2 and specific volume...
Steam enters an adiabatic turbine at 140 bar and 560 C and leaves at 10 kPa....
Steam enters an adiabatic turbine at 140 bar and 560 C and leaves at 10 kPa. At the exit, the pressure and quality are 50 KPa and .90, respectively. Determine the power produced (kW) by the turbine if the mass flow rate is 1.63 kg/s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT