Question

Suppose that ϕ:R→S is a ring homomorphism and that the image of ϕ is not {0}....

Suppose that ϕ:R→S is a ring homomorphism and that the image of ϕ is not {0}. If R has a unity and S is an integral domain, show that ϕ carries the unity of R to the unity of S.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be a commutative ring with unity. Prove that the principal ideal generated by x...
Let R be a commutative ring with unity. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal iff R is an integral domain.
Let P be a commutative PID (principal ideal domain) with identity. Suppose that there is a...
Let P be a commutative PID (principal ideal domain) with identity. Suppose that there is a surjective ring homomorphism f : P -> R for some (commutative) ring R. Show that every ideal of R is principal. Use this to list all the prime and maximal ideals of Z12.
Suppose that R is a commutative ring without unity and also without zero-divisors. Show that the...
Suppose that R is a commutative ring without unity and also without zero-divisors. Show that the characteristic of R is zero or prime.
Let R be a commutative ring with unity. Let A consist of all elements in A[x]...
Let R be a commutative ring with unity. Let A consist of all elements in A[x] whose constant term is equal to 0. Show that A is a prime ideal of A[x]
Let R be a commutative ring and let a ε R be a non-zero element. Show...
Let R be a commutative ring and let a ε R be a non-zero element. Show that Ia ={x ε R such that ax=0} is an ideal of R. Show that if R is a domain then Ia is a prime ideal
Suppose S is a ring with p elements, where p is prime. a)Show that as an...
Suppose S is a ring with p elements, where p is prime. a)Show that as an additive group (ignoring multiplication), S is cyclic. b)Show that S is a commutative group.
Let R be a ring. For n > or equal to 0, let In = {a...
Let R be a ring. For n > or equal to 0, let In = {a element of R | 5na = 0}. Show that I = union of In is an ideal of R.
If (R, +,° )is a ring then for all a ∈ R a ° 0 =...
If (R, +,° )is a ring then for all a ∈ R a ° 0 = 0 ° a = 0 Thus if (R, ° ) has an identity, say 1, and |R| ≧ 2 then 1≠ 0 Prove these contentions.
Let R be a ring. For n ≥ 0, let In = {a ∈ R |...
Let R be a ring. For n ≥ 0, let In = {a ∈ R | 5na = 0}. Show that I = ⋃ In is an ideal of R. Please use the strategies from Chapter 14 in Joseph Gallian's "Contemporary Abstract Algebra."
Let R be a ring. For n ≥ 0, let In = {a ∈ R |...
Let R be a ring. For n ≥ 0, let In = {a ∈ R | 5na = 0}. Show that I = ⋃ In is an ideal of R. Please use the strategies from Chapter 14 in Joseph Gallian's "Contemporary Abstract Algebra."
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT