Question

If (R, +,° )is a ring then for all a ∈ R a ° 0 =...

If (R, +,° )is a ring then for all a ∈ R
a ° 0 = 0 ° a = 0
Thus if (R, ° ) has an identity, say 1, and |R| ≧ 2 then 1≠ 0
Prove these contentions.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be a ring, and assume that r^2 = r for all r ∈ R....
Let R be a ring, and assume that r^2 = r for all r ∈ R. (a) Prove that r + r = 0 for all r ∈ R. (b) Prove that R is commutative.
Let R be a ring, and set I:={(r,0)|r∈R}. Prove that I is an ideal of R×R,...
Let R be a ring, and set I:={(r,0)|r∈R}. Prove that I is an ideal of R×R, and that (R×R)/I is isomorphism to R.
Let I be an ideal in a commutative ring R with identity. Prove that R/I is...
Let I be an ideal in a commutative ring R with identity. Prove that R/I is a field if and only if I ? R and whenever J is an ideal of R containing I, I = J or J = R.
Prove that a ring R is a division ring if and only if it's only left-ideals...
Prove that a ring R is a division ring if and only if it's only left-ideals and right-ideals are {0} and R. Please answer in a way to explain as most of these words are unfamiliar.
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations (a1, a2, a3, · · ·) + (b1, b2, b3, · · ·) = (a1 + b1, a2 + b2, a3 + b3, · · ·), (a1, a2, a3, · · ·) · (b1, b2, b3, · · ·) = (a1 · b1, a2 · b2, a3 ·...
Let R be a ring. For n ≥ 0, let In = {a ∈ R |...
Let R be a ring. For n ≥ 0, let In = {a ∈ R | 5na = 0}. Show that I = ⋃ In is an ideal of R. Please use the strategies from Chapter 14 in Joseph Gallian's "Contemporary Abstract Algebra."
Let R be a ring. For n ≥ 0, let In = {a ∈ R |...
Let R be a ring. For n ≥ 0, let In = {a ∈ R | 5na = 0}. Show that I = ⋃ In is an ideal of R. Please use the strategies from Chapter 14 in Joseph Gallian's "Contemporary Abstract Algebra."
Define a+b=a+b -1 and a*b=ab-(a+b)+2 Assume that (Z, +,*) is a ring. (a) Prove that the...
Define a+b=a+b -1 and a*b=ab-(a+b)+2 Assume that (Z, +,*) is a ring. (a) Prove that the additative identity is 1? (b) what is the multipicative identity? (Make sure you proe that your claim is true). (c) Prove that the ring is commutative. (d) Prove that the ring is an integral domain. (Abstrat Algebra)