Question

Suppose that R is a commutative ring without unity and also without zero-divisors. Show that the...

Suppose that R is a commutative ring without unity and also without zero-divisors.
Show that the characteristic of R is zero or prime.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that R is a commutative ring without zero-divisors. Let x and y be nonzero elements....
Suppose that R is a commutative ring without zero-divisors. Let x and y be nonzero elements. 1. Suppose that x has infinite additive order. Show that y also has infinite additive order. 2. Suppose that the additive order of x is n. Show that the additive order of y is at most n. 3.Show that all the nonzero elements of R have the same additive order.
If R is a commutative ring with unity and A is a proper ideal of R,...
If R is a commutative ring with unity and A is a proper ideal of R, show that R/A is a commutative ring with unity.
A commutative ring with unity is called regular if for each a in R there exists...
A commutative ring with unity is called regular if for each a in R there exists an x in R such that a^2x=a. Prove that in a regular ring, every prime ideal is maximal.
Let R be a commutative ring with unity. Let A consist of all elements in A[x]...
Let R be a commutative ring with unity. Let A consist of all elements in A[x] whose constant term is equal to 0. Show that A is a prime ideal of A[x]
Let R be a commutative ring with unity. Prove that the principal ideal generated by x...
Let R be a commutative ring with unity. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal iff R is an integral domain.
Let R be a commutative ring and let a ε R be a non-zero element. Show...
Let R be a commutative ring and let a ε R be a non-zero element. Show that Ia ={x ε R such that ax=0} is an ideal of R. Show that if R is a domain then Ia is a prime ideal
Suppose that R is a commutative ring and I is an ideal in R. Please prove...
Suppose that R is a commutative ring and I is an ideal in R. Please prove that I is maximal if and only if R/I is a field.
Please give examples for (a) a non-commutative ring (b) a subgroup H of a group G...
Please give examples for (a) a non-commutative ring (b) a subgroup H of a group G which is not normal in G (c) a commutative ring R in which the zero ideal {0} is not prime (d) a nonzero proper ideal J in a commutative ring IZ which is not maximal in R
Let P be a commutative PID (principal ideal domain) with identity. Suppose that there is a...
Let P be a commutative PID (principal ideal domain) with identity. Suppose that there is a surjective ring homomorphism f : P -> R for some (commutative) ring R. Show that every ideal of R is principal. Use this to list all the prime and maximal ideals of Z12.
Let I, M be ideals of the commutative ring R. Show that M is a maximal...
Let I, M be ideals of the commutative ring R. Show that M is a maximal ideal of R if and only if M/I is a maximal ideal of R/I.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT