Question

Let P be a commutative PID (principal ideal domain) with identity. Suppose that there is a...

Let P be a commutative PID (principal ideal domain) with identity. Suppose that there is a surjective ring homomorphism f : P -> R for some (commutative) ring R. Show that every ideal of R is principal. Use this to list all the prime and maximal ideals of Z12.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be a commutative ring with unity. Prove that the principal ideal generated by x...
Let R be a commutative ring with unity. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal iff R is an integral domain.
Let I, M be ideals of the commutative ring R. Show that M is a maximal...
Let I, M be ideals of the commutative ring R. Show that M is a maximal ideal of R if and only if M/I is a maximal ideal of R/I.
Let R be a commutative ring and let a ε R be a non-zero element. Show...
Let R be a commutative ring and let a ε R be a non-zero element. Show that Ia ={x ε R such that ax=0} is an ideal of R. Show that if R is a domain then Ia is a prime ideal
Let I be an ideal in a commutative ring R with identity. Prove that R/I is...
Let I be an ideal in a commutative ring R with identity. Prove that R/I is a field if and only if I ? R and whenever J is an ideal of R containing I, I = J or J = R.
Let R be a commutative ring with unity. Let A consist of all elements in A[x]...
Let R be a commutative ring with unity. Let A consist of all elements in A[x] whose constant term is equal to 0. Show that A is a prime ideal of A[x]
Suppose that R is a commutative ring and I is an ideal in R. Please prove...
Suppose that R is a commutative ring and I is an ideal in R. Please prove that I is maximal if and only if R/I is a field.
Let M = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let M = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:M→R f(x)↦f(a) This is called the evaluation homomorphism. 1. Describe the kernel of the evaluation homomorphism. 2. Is the kernel of the evaluation homomorphism a prime ideal or a maximal ideal or both or neither?
Let G be a group and let p be a prime number such that pg =...
Let G be a group and let p be a prime number such that pg = 0 for every element g ∈ G. a.      If G is commutative under multiplication, show that the mapping f : G → G f(x) = xp is a homomorphism b.     If G is an Abelian group under addition, show that the mapping f : G → G f(x) = xpis a homomorphism.
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:B→R f(x)↦f(a) It is called the evaluation homomorphism. (a) Prove that the evaluation homomorphism is a ring homomorphism (b) Describe the image of the evaluation homomorphism. (c) Describe the kernel of the evaluation homomorphism. (d) What does the First Isomorphism Theorem for...
9.3.2 Problem. Let R be a ring and I an ideal of R. Let π :...
9.3.2 Problem. Let R be a ring and I an ideal of R. Let π : R→R/I be the natural projection. Let J be an ideal of R. Show that π−1(π(J)) = (I, J). Show that if J is a maximal ideal of R with, I not ⊆ J, then π (J) = R/I. Suppose that J is an ideal of R with I ⊆ J. Show that J is a maximal ideal of R if and only if π(J)...