Question

A particle moves in the plane so that its velocity and position vectors are always orthogonal....

A particle moves in the plane so that its velocity and position vectors are always orthogonal. Show that the particle moves in a circle centered at the origin.

Homework Answers

Answer #1

Let the velocity vector be v and the position vector be r.

By the definition of dot product, v∙r = 0 = |v|*|r|*cos(θ), since v and r are orthogonal

Also, v = dr/dt
==> (dr/dt)∙r = 0
==> r dr = 0 dt

==> ∫ r dr = ∫ 0 dt
==> r2/2 = C
==> r2 = 2C
here 2C, a constant is equal to R2, another constant.

Then, r2 = R2
Since r is a vector, let's say (x, y), then we have x2 + y2 = R2

This is the equation of a circle centered at the origin.

Hence the position vector describes a circle centered at the origin and the particle must move in a circle centered at the origin.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle moves in the xy plane. Its position vector function of time is ?⃑ =...
A particle moves in the xy plane. Its position vector function of time is ?⃑ = (2?3 − 5?)?̂ + (6 − 7?4)?̂ where r is in meters and t is in seconds. a) In unit vector notation calculate the position vector at t =2 s. b) Find the magnitude and direction of the position vector for part a. c) In unit vector notation calculate the velocity vector at t =2 s. d) Find the magnitude and direction of the...
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves...
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the VELOCITY and the POSITION of the particle as a function of time.
A particle moves such that its velocity at time  is given by v=4t3i+5t4j+3t2k If its position x...
A particle moves such that its velocity at time  is given by v=4t3i+5t4j+3t2k If its position x at time t=0 is given by x(0)=i+j+k , what is the position of the particle at time t?
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = 4t, et, e−t   v(0) = 0,0,−5  r(0) = 0,1, 4
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = 2 i + 6t j + 12t2 k, v(0) = i, r(0) = 3 j − 6 k
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = (6t + et) i + 12t2 j, v(0) = 3i, r(0) = 7 i − 3 j v(t)= r(t)=
A particle of mass m=0.2kg moves in the xy plane subject to a force such as...
A particle of mass m=0.2kg moves in the xy plane subject to a force such as that its position as a function of time is given by the vector r(t)= (3.0m/s2)t*2i+[12.0m-(2.0m/s*3)t*3]j what is the magnitude of the torque on the particle about the origin at the moment when the particle reaches the x axis?
A small object with mass 4.10 kg moves counterclockwise with constant speed 1.35 rad/s in a...
A small object with mass 4.10 kg moves counterclockwise with constant speed 1.35 rad/s in a circle of radius 3.05 m centered at the origin. It starts at the point with position vector 3.05î m. Then it undergoes an angular displacement of 8.65 rad. (a) What is its new position vector? m (b) In what quadrant is the particle located and what angle does its position vector make with the positive x-axis? Second  at ??° (c) What is its velocity? m/s...
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (a) Find the position of the particle after this time. (b) Find its velocity at the end of this time interval. Next, assume it moves with simple harmonic motion for 5.60 s and x = 0 is its equilibrium position. (Assume that the velocity and acceleration is...
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and...
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the velocity of the particle as a function of time. ii) Determine the position of the particle as a function of time. (Explanation please )
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT