Question

A particle moves such that its velocity at time  is given by v=4t3i+5t4j+3t2k If its position x...

A particle moves such that its velocity at time  is given by

v=4t3i+5t4j+3t2k

If its position x at time t=0 is given by x(0)=i+j+k , what is the position of the particle at time t?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = 2 i + 6t j + 12t2 k, v(0) = i, r(0) = 3 j − 6 k
A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity...
A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity v(0) = i - j + k. Its acceleration is a(t) = 4t i + 4t j + k. Find its velocity, v(t), and position, r(t), at time t.
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = (6t + et) i + 12t2 j, v(0) = 3i, r(0) = 7 i − 3 j v(t)= r(t)=
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position...
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position vectors. a(t)  =  5 i  +  9t k,    v(0)  =  3 i  −  j,    r(0)  =  j  +  6 k (a) Find the velocity of the particle at time t. (b) Find the position of the particle at time t.
A particle of mass 10kg moves in a straight line such that the force (in Newtons)...
A particle of mass 10kg moves in a straight line such that the force (in Newtons) acting on it at time (in seconds) is given by 90t4+70t3+30, If at time t=0 its velocity,v (in ms-1), is given by v(0)=9 , and its position x (in m) is given by x(0)=6 , what is the position of the particle at time ?
A particle starts at the origin with initial velocity ⃗v(0) = ⃗i − ⃗j + ⃗k....
A particle starts at the origin with initial velocity ⃗v(0) = ⃗i − ⃗j + ⃗k. Its acceleration is ⃗a(t) = 4t⃗i + 3t⃗j − ⃗k. Find its position at t = 3.
A 3.60-kg particle moves along the x axis. Its position varies with time according to x...
A 3.60-kg particle moves along the x axis. Its position varies with time according to x = t + 3.0t^3, where x is in meters and t is in seconds. (a) Find the kinetic energy of the particle at any time t. (Use the following as necessary: t.) K = (b) Find the magnitude of the acceleration of the particle and the force acting on it at time t. (Use the following as necessary: t.) a = F = (c)...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at time t=0 are v(0)=0 and S(0)=2. 1. Find a formula for the velocity v(t) at time t. 2. Find a formula for the position S(t) at time t. 3. Find the total distance traveled by the particle on the interval [0,3].
1-The velocity of a particle is v = { 6 i + ( 28 - 2...
1-The velocity of a particle is v = { 6 i + ( 28 - 2 t ) j } m/s, where t is in seconds. If r=0 when t=0, determine particle displacement during time interval t = 3 s to t = 8 s in the y direction. 2-A particle, originally at rest and located at point (1 ft, 4 ft, 5 ft), is subjected to an acceleration of a={ 3 t i + 17 t2k} ft/s. Determine magnitude...
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (a) Find the position of the particle after this time. (b) Find its velocity at the end of this time interval. Next, assume it moves with simple harmonic motion for 5.60 s and x = 0 is its equilibrium position. (Assume that the velocity and acceleration is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT