Question

A particle moves in the xy plane. Its position vector function of time is ?⃑ =...

A particle moves in the xy plane. Its position vector function of time is ?⃑ = (2?3 − 5?)?̂ + (6 − 7?4)?̂ where r is in meters and t is in seconds.

a) In unit vector notation calculate the position vector at t =2 s.
b) Find the magnitude and direction of the position vector for part a.
c) In unit vector notation calculate the velocity vector at t =2 s.
d) Find the magnitude and direction of the velocity vector for part b.
e) In unit vector notation calculate the acceleration vector at t =2 s.
f) Find the magnitude and direction of the acceleration vector for part e.

Homework Answers

Answer #1

Given ?⃑ = (2?3 − 5?)?̂ + (6 − 7?4)?̂

a) Position Vector at t=2s

b) Magnitude:

Direction :

c)

d) Magnitude =

Direction =

e) Similarly Accleration =

f) Magnitude =

Direction =

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^,...
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^, where a→ is in meters per second-squared and t is in seconds. At t = 0, the position vector r→=(19.0m)i^+(44.0m)j^ locates the particle, which then has the velocity vector v→=(5.40m/s)i^+(1.70m/s)j^. At t = 4.10 s, what are (a) its position vector in unit-vector notation and (b) the angle between its direction of travel and the positive direction of the x axis?
The vector position of a 3.80 g particle moving in the xy plane varies in time...
The vector position of a 3.80 g particle moving in the xy plane varies in time according to r (with arrow)1 = (3i + 3j)t + 2jt2 where t is in seconds and r with arrow is in centimeters. At the same time, the vector position of a 5.45 g particle varies as r (with arrow)2 = 3i − 2it2 − 6jt. (a) Determine the vector position of the center of mass at t = 2.90. (b) Determine the linear...
A particle moves in the xy plane, starting from the origin at t=0 with an initial...
A particle moves in the xy plane, starting from the origin at t=0 with an initial velocity having an x-component of 6 m/s and y component of 5 m/s. The particle experiences an acceleration in the x-direction, given by ax=4t m/s2. Determine the acceleration vector at any later time. Determine the total velocity vector at any later time Calculate the velocity and speed of the particle at t=5.0 s, and the angle the velocity vector makes with the x-axis. Determine...
The acceleration of a particle moving only on a horizontal xy plane is given by ModifyingAbove...
The acceleration of a particle moving only on a horizontal xy plane is given by ModifyingAbove a With right-arrow equals 4t ModifyingAbove i With caret plus 5t ModifyingAbove j With caret, where ModifyingAbove a With right-arrow is in meters per second-squared and t is in seconds. At t = 0, the position vector ModifyingAbove r With right-arrow equals left-parenthesis 24.0mright-parenthesis ModifyingAbove i With caret plus left-parenthesis 49.0mright-parenthesis ModifyingAbove j With caret locates the particle, which then has the velocity vector...
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves...
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the VELOCITY and the POSITION of the particle as a function of time.
A particle of mass m=0.2kg moves in the xy plane subject to a force such as...
A particle of mass m=0.2kg moves in the xy plane subject to a force such as that its position as a function of time is given by the vector r(t)= (3.0m/s2)t*2i+[12.0m-(2.0m/s*3)t*3]j what is the magnitude of the torque on the particle about the origin at the moment when the particle reaches the x axis?
The position ? of a particle moving in space from (t=0 to 3.00 s) is given...
The position ? of a particle moving in space from (t=0 to 3.00 s) is given by ? = (6.00?^2− 2.00t^3 )i+ (3.00? − ?^2 )j+ (7.00?)? in meters and t in seconds. Calculate (for t = 1.57 s): a. The magnitude and direction of the velocity (relative to +x). b. The magnitude and direction of the acceleration (relative to +y). c. The angle between the velocity and the acceleration vector. d. The average velocity from (t=0 to 3.00 s)....
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and...
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the velocity of the particle as a function of time. ii) Determine the position of the particle as a function of time. (Explanation please )
1. The position of a bird in the xy-plane is given by ?⃗ = (3.0?−∝ ?)?̂+...
1. The position of a bird in the xy-plane is given by ?⃗ = (3.0?−∝ ?)?̂+ ?? 2 ?̂where ∝= 1.6 ?/? and ? = 0.8 ?/? 2 . a) What are Vx(t) and Vy(t), x and y components of the velocity of the bird as a function of time? b) What is the bird’s net velocity at 3.0 s (magnitude and direction)? c) What are ax(t) and ay(t), x and y components of the acceleration of the bird as...
Suppose that the position vector for a particle is given as a function of time by...
Suppose that the position vector for a particle is given as a function of time by vector r (t) = x(t)î + y(t)ĵ, with x(t) = at + b and y(t) = ct2 + d, where a = 1.90 m/s, b = 1.10 m, c = 0.128 m/s2, and d = 1.12 m. (a) Calculate the average velocity during the time interval from t = 2.05 s to t = 3.75 s. vector v = m/s (b) Determine the velocity...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT