Question

A particle of mass m=0.2kg moves in the xy plane subject to a force such as...

A particle of mass m=0.2kg moves in the xy plane subject to a force such as that its position as a function of time is given by the vector r(t)= (3.0m/s2)t*2i+[12.0m-(2.0m/s*3)t*3]j
what is the magnitude of the torque on the particle about the origin at the moment when the particle reaches the x axis?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle moves in the xy plane. Its position vector function of time is ?⃑ =...
A particle moves in the xy plane. Its position vector function of time is ?⃑ = (2?3 − 5?)?̂ + (6 − 7?4)?̂ where r is in meters and t is in seconds. a) In unit vector notation calculate the position vector at t =2 s. b) Find the magnitude and direction of the position vector for part a. c) In unit vector notation calculate the velocity vector at t =2 s. d) Find the magnitude and direction of the...
A particle moves in the xy plane, starting from the origin at t=0 with an initial...
A particle moves in the xy plane, starting from the origin at t=0 with an initial velocity having an x-component of 6 m/s and y component of 5 m/s. The particle experiences an acceleration in the x-direction, given by ax=4t m/s2. Determine the acceleration vector at any later time. Determine the total velocity vector at any later time Calculate the velocity and speed of the particle at t=5.0 s, and the angle the velocity vector makes with the x-axis. Determine...
A particle is to move in an xy plane, clockwise around the origin as seen from...
A particle is to move in an xy plane, clockwise around the origin as seen from the positive side of the z axis. In unit-vector notation, what torque acts on the particle at time t = 7.6 s if the magnitude of its angular momentum about the origin is (a)8.4 kg·m2/s, (b)8.4t2 kg·m2/s3, (c)8.4t1/2 kg·m2/s3/2, and (d)8.4/t2 kg·m2*s?
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^,...
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^, where a→ is in meters per second-squared and t is in seconds. At t = 0, the position vector r→=(19.0m)i^+(44.0m)j^ locates the particle, which then has the velocity vector v→=(5.40m/s)i^+(1.70m/s)j^. At t = 4.10 s, what are (a) its position vector in unit-vector notation and (b) the angle between its direction of travel and the positive direction of the x axis?
An object moving in the xy-plane is subjected to the force F = 2xy i +...
An object moving in the xy-plane is subjected to the force F = 2xy i + 3y j N, where x and y are in m. a. The particle moves from the origin to the point with coordinates (a, b) by moving first along the x-axis to (a, 0), then parallel to the y-axis. How much work does the force do? b. The particle moves from the origin to the point with coordinates (a, b) by moving first along the...
A metal bar is in the xy-plane with one end of the bar at the origin....
A metal bar is in the xy-plane with one end of the bar at the origin. A force F⃗ =( 7.93 N )i^+( -3.21 N )j^ is applied to the bar at the point x= 3.62 m , y= 3.41 m Part A What is the position vector r⃗  for the point where the force is applied? part b What are the magnitude of the torque with respect to the origin produced by F⃗ ? What are direction of the torque...
A) a particle is located at r=(4.0i+3.5j+6.0k) meters has a force F=(6.5j-3.2k) Newtons acting on it....
A) a particle is located at r=(4.0i+3.5j+6.0k) meters has a force F=(6.5j-3.2k) Newtons acting on it. Find the torque with reference to the origin. B) the origin of a coordinate system is at the center of a wheel which rotates in the xy plane about its axle which is the z axis. A force F=215N acts in the xy plane at a 33 degree angle to the x axis (33 degrees north of east) at the point x=28cm, y=33.5cm. Determine...
The vector position of a 3.80 g particle moving in the xy plane varies in time...
The vector position of a 3.80 g particle moving in the xy plane varies in time according to r (with arrow)1 = (3i + 3j)t + 2jt2 where t is in seconds and r with arrow is in centimeters. At the same time, the vector position of a 5.45 g particle varies as r (with arrow)2 = 3i − 2it2 − 6jt. (a) Determine the vector position of the center of mass at t = 2.90. (b) Determine the linear...
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves...
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the VELOCITY and the POSITION of the particle as a function of time.
PROBLEM 1 The position of a particle on the x axis is given by: x =...
PROBLEM 1 The position of a particle on the x axis is given by: x = 5.00 – 8.00 t + 2.00 t 2 with t in seconds and x in meters. a) Calculate the value of x the moment the particle momentarily stops. b) When t = 0.500 s, is the particle speeding up or slowing down? Explain. PROBLEM 2 A ball is kicked at an angle θ0 with the horizontal with an initial speed of 20.0 m /...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT