Question

The base of the solid S is the circle x2+y2=814. The cross sections perpendicular to the...

The base of the solid S is the circle x2+y2=814. The cross sections perpendicular to the base and the x-axis are semicircles. Find the volume of S. Enter your answer in terms of π

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
the base of certain solid is the triangle at (-4,2),(2,2), and origin. cross-sections perpendicular to the...
the base of certain solid is the triangle at (-4,2),(2,2), and origin. cross-sections perpendicular to the y-axis are squares. find the volume
A solid region has a circular base of radius 3 whose cross-sections perpendicular to the x-axis...
A solid region has a circular base of radius 3 whose cross-sections perpendicular to the x-axis are equilateral triangles. Set up, but do not evaluate, an integral equal to the volume of this solid region.Hint: the area of an equilateral triangle with side length s is (s^2/4)(√3.)
A solid has a circular base of radius 1. Its parallel cross-sections perpendicular to the base...
A solid has a circular base of radius 1. Its parallel cross-sections perpendicular to the base are parabolas. The largest parabola has the equation y = 4 − x ^2 if placed on the plane. What is the volume? A. 9π/2 B. 1/2 C. π/2 D. 9/2 E. None of these
The base o a solid is the region in the xy plane bounded by y =...
The base o a solid is the region in the xy plane bounded by y = 4x, y = 2x+8 and x = 0. Find the the volume of the solid if the cross sections that are perpendicular to the x-axis are: (a) Squares; (b) semicircles.
Find the volume of the solid ? if the base of ? is the triangular region...
Find the volume of the solid ? if the base of ? is the triangular region with vertices (0,0), (3,0), and (0,2) and cross sections perpendicular to y-axis are semicircles. Please explain how you found x/3 + y/2 =1
Consider the solid S described below. The base of S is the region enclosed by the...
Consider the solid S described below. The base of S is the region enclosed by the parabola y = 1 - 9x^2 and the x-axis. Cross-sections perpendicular to the x-axis are isosceles triangles with height equal to the base. Find the volume V of this solid.
1)Find the volume of the solid whose base is a circle with equation x^2+y^2=36 and cross-sections...
1)Find the volume of the solid whose base is a circle with equation x^2+y^2=36 and cross-sections are squares perpendicular to the x-axis. (a) Create the graph for this problem (b) What is the volume of one 'slice'? (c) What is the integral for the volume? (d) What is the volume in exact form? 2) Find the volume of the region bounded by y=-x^2+4 and y=x+2 rotated about the line y=5 (a) Create the graph for this problem (b) What is...
Find the volume V of the described solid S. The base of S is an elliptical...
Find the volume V of the described solid S. The base of S is an elliptical region with boundary curve 9x2 + 4y2 = 36. Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.
3) The base of a solid is the first quadrant region between the curve y =...
3) The base of a solid is the first quadrant region between the curve y = 2 ⋅ sin ⁡ xand the x-axis on the interval [ 0 , π ]. Cross sections perpendicular to the x-axis are semi circles with diameters in the x-y plane. Sketch the solid. Find the volume of the solid.
The region bounded by y=x^3, y=x, x=0 is the base of a solid. a) If the...
The region bounded by y=x^3, y=x, x=0 is the base of a solid. a) If the cross sections are perpendicular to the x-axis are right isosceles triangles (congruent leg lies on the base), find the volume of the solid. b) If the cross sections are perpendicular to the y-axis are equilateral triangles, find the volume of the solid.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT