Question

1)Find the volume of the solid whose base is a circle with equation x^2+y^2=36 and cross-sections...

1)Find the volume of the solid whose base is a circle with equation x^2+y^2=36 and cross-sections are squares perpendicular to the x-axis.
(a) Create the graph for this problem
(b) What is the volume of one 'slice'?
(c) What is the integral for the volume?
(d) What is the volume in exact form?

2) Find the volume of the region bounded by y=-x^2+4 and y=x+2 rotated about the line y=5
(a) Create the graph for this problem
(b) What is the volume of one 'slice'?
(c) What is the integral for the volume?
(d) What is the volume in exact form?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Find the volume of the region between x = -y^2 + 4 and x =...
1. Find the volume of the region between x = -y^2 + 4 and x = 4 - 2y rotated about the x-axis. (a) Create the graph for this problem (b) What is the volume of one 'cylinder'? (c) What is the integral for the volume? (d) What is the volume in exact form? 2. Find the volume of the region between y^2 - 1 = x and 7 - y^2 = x rotated about the line y = 3....
Find the volume of the solid whose base is rotating around the region in the first...
Find the volume of the solid whose base is rotating around the region in the first quadrant bounded by y = x^5 and y = 1. A) and the y-axis around the x-axis? B) and the y-axis around the y-axis? C) and y-axis whose cross sections are perpendicular to x-axis are squares
The region bounded by y=x^3, y=x, x=0 is the base of a solid. a) If the...
The region bounded by y=x^3, y=x, x=0 is the base of a solid. a) If the cross sections are perpendicular to the x-axis are right isosceles triangles (congruent leg lies on the base), find the volume of the solid. b) If the cross sections are perpendicular to the y-axis are equilateral triangles, find the volume of the solid.
A solid region has a circular base of radius 3 whose cross-sections perpendicular to the x-axis...
A solid region has a circular base of radius 3 whose cross-sections perpendicular to the x-axis are equilateral triangles. Set up, but do not evaluate, an integral equal to the volume of this solid region.Hint: the area of an equilateral triangle with side length s is (s^2/4)(√3.)
The base o a solid is the region in the xy plane bounded by y =...
The base o a solid is the region in the xy plane bounded by y = 4x, y = 2x+8 and x = 0. Find the the volume of the solid if the cross sections that are perpendicular to the x-axis are: (a) Squares; (b) semicircles.
1) A volume is described as follows: 1. the base is the region bounded by y=2−2/25x^2...
1) A volume is described as follows: 1. the base is the region bounded by y=2−2/25x^2 and y=0 2. every cross-section parallel to the x-axis is a triangle whose height and base are equal. Find the volume of this object. volume = 2) The region bounded by f(x)=−4x^2+24x+108, x=0, and y=0 is rotated about the y-axis. Find the volume of the solid of revolution. Find the exact value; write answer without decimals.
2. Volume (a) Compute volume of the solid whose base is a triangular region with vertices...
2. Volume (a) Compute volume of the solid whose base is a triangular region with vertices (0,0), (1,0), and (0,1), and whose cross-sections taken perpendicular to the y -axis are equilateral triangles. (b) Compute the volume of the solid formed by rotating the region between the curves x=(y-3)^2 and x = 4 about the line y =1
Find the volume of the of the solid described as follows: The base of the solid...
Find the volume of the of the solid described as follows: The base of the solid is the region enclosed by the line y=4-x, the line y=x, and the y-axis. The cross sections of the region that are perpendicular to the x-axis are isosceles triangles whose height is equal to half their base. What is the volume of this solid (rounded to two decimal places)? Please show work. Thanks much!
The base of the solid S is the circle x2+y2=814. The cross sections perpendicular to the...
The base of the solid S is the circle x2+y2=814. The cross sections perpendicular to the base and the x-axis are semicircles. Find the volume of S. Enter your answer in terms of π
the base of certain solid is the triangle at (-4,2),(2,2), and origin. cross-sections perpendicular to the...
the base of certain solid is the triangle at (-4,2),(2,2), and origin. cross-sections perpendicular to the y-axis are squares. find the volume
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT