Question

the base of certain solid is the triangle at (-4,2),(2,2), and origin. cross-sections perpendicular to the y-axis are squares. find the volume

Answer #1

The base of the solid S is the circle x2+y2=814. The cross
sections perpendicular to the base and the x-axis are semicircles.
Find the volume of S. Enter your answer in terms of π

A solid region has a circular base of radius 3 whose
cross-sections perpendicular to the x-axis are equilateral
triangles.
Set up, but do not evaluate, an integral equal to the volume of
this solid region.Hint: the area of an equilateral triangle with
side length s is (s^2/4)(√3.)

The base o a solid is the region in the xy plane bounded by y =
4x, y = 2x+8 and x = 0. Find the the volume of the solid if the
cross sections that are perpendicular to the x-axis are: (a)
Squares; (b) semicircles.

The region bounded by y=x^3, y=x, x=0 is the base of a solid. a)
If the cross sections are perpendicular to the
x-axis are right isosceles
triangles (congruent leg lies on the base), find
the volume of the solid. b) If the cross sections are perpendicular
to the y-axis are equilateral
triangles, find the volume of the solid.

A
solid has a circular base of radius 1. Its parallel cross-sections
perpendicular to the base are parabolas. The largest parabola has
the equation y = 4 − x ^2 if placed on the plane. What is the
volume?
A. 9π/2
B. 1/2
C. π/2
D. 9/2
E. None of these

1)Find the volume of the solid whose base is a circle with
equation x^2+y^2=36 and cross-sections are squares perpendicular to
the x-axis.
(a) Create the graph for this problem
(b) What is the volume of one 'slice'?
(c) What is the integral for the volume?
(d) What is the volume in exact form?
2) Find the volume of the region bounded by y=-x^2+4 and y=x+2
rotated about the line y=5
(a) Create the graph for this problem
(b) What is...

Find the volume of the solid whose base is rotating around the
region in the first quadrant bounded by y = x^5 and y = 1.
A) and the y-axis around the x-axis?
B) and the y-axis around the y-axis?
C) and y-axis whose cross sections are perpendicular to x-axis
are squares

Find the volume of the of the solid described as follows: The
base of the solid is the region enclosed by the line y=4-x, the
line y=x, and the y-axis. The cross sections of the region that are
perpendicular to the x-axis are isosceles triangles whose height is
equal to half their base. What is the volume of this solid (rounded
to two decimal places)? Please show work. Thanks much!

The base of a solid is
the region bounded by y = 9 and y = x 2 .
The cross-sections of
the solid perpendicular to the x axis are rectangles of height 10.
The volume of the solid is

Consider the solid S described below. The base of S is the
region enclosed by the parabola y = 1 - 9x^2 and the x-axis.
Cross-sections perpendicular to the x-axis are isosceles triangles
with height equal to the base. Find the volume V of this solid.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 13 minutes ago

asked 23 minutes ago

asked 38 minutes ago

asked 52 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago