Question

Let B={(1,1,1),(4,−2,0),(0,−3,2)} and B′={(1,0,0),(1,−2,1),(1,3,−1)} be two ordered bases for the vector space V=R3. Find the transition...

Let B={(1,1,1),(4,−2,0),(0,−3,2)} and B′={(1,0,0),(1,−2,1),(1,3,−1)} be two ordered bases for the vector space V=R3. Find the transition matrix from B to B′.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the ordered bases B={[8,9]} and C={[-2,0],[-3,3]} for the vector space R^2. A. find the matrix...
Consider the ordered bases B={[8,9]} and C={[-2,0],[-3,3]} for the vector space R^2. A. find the matrix from C to B. B.Find the coordinates of u=[2,1] in the ordered basis B. C.Find the coordinates of v in the ordered basis B if the coordinate vector of v in C =[-1,2].
Let B = {(1, 3), (?2, ?2)} and B' = {(?12, 0), (?4, 4)} be bases...
Let B = {(1, 3), (?2, ?2)} and B' = {(?12, 0), (?4, 4)} be bases for R2, and let A = 3 2 0 4 be the matrix for T: R2 ? R2 relative to B. (a) Find the transition matrix P from B' to B. P = (b) Use the matrices P and A to find [v]B and [T(v)]B, where [v]B' = [1 ?5]T. [v]B = [T(v)]B = (c) Find P?1 and A' (the matrix for T relative...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form lambda?I.   [[4.5,0][0,4.5]]  [[5.5,0][0,5.5]]  [[4,0][0,4]]  [[3.5,0][0,3.5]]  [[5,0][0,5]]  [[1.5,0][0,1.5]] 2. Find the orthogonal projection of the matrix [[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace 0.   [[-1,3][3,1]]  [[1.5,1][1,-1.5]]  [[0,4][4,0]]  [[3,3.5][3.5,-3]]  [[0,1.5][1.5,0]]  [[-2,1.5][1.5,2]]  [[0.5,4.5][4.5,-0.5]]  [[-1,6][6,1]]  [[0,3.5][3.5,0]]  [[-1.5,3.5][3.5,1.5]] 3. Find the orthogonal projection of the matrix [[1,5][1,2]] onto the space of anti-symmetric 2x2 matrices.   [[0,-1] [1,0]]  [[0,2] [-2,0]]  [[0,-1.5] [1.5,0]]  [[0,2.5] [-2.5,0]]  [[0,0] [0,0]]  [[0,-0.5] [0.5,0]]  [[0,1] [-1,0]] [[0,1.5] [-1.5,0]]  [[0,-2.5] [2.5,0]]  [[0,0.5] [-0.5,0]] 4. Let p be the orthogonal projection of u=[40,-9,91]T onto the...
Let B = {(1, 2), (−1, −1)} and B' = {(−4, 1), (0, 2)} be bases...
Let B = {(1, 2), (−1, −1)} and B' = {(−4, 1), (0, 2)} be bases for R2, and let A = −1 2 1 0 be the matrix for T: R2 → R2 relative to B. (a) Find the transition matrix P from B' to B. P = (b) Use the matrices P and A to find [v]B and [T(v)]B , where [v]B' = [−3 1]T. [v]B = [T(v)]B = (c) Find P inverse−1 and A' (the matrix for...
Let V be a vector space with ordered basis B = (b1, . . . ,...
Let V be a vector space with ordered basis B = (b1, . . . , bn). Does the basis having n elements imply that V is the coordinate space R^n?
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose...
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose that T is a linear transformation from V to itself and T(u) = u + v, T(v) = u, T(w) = v. 1. Find the matrix of T relative to the ordered basis B. 2. A typical element of V looks like au + bv + cw, where a, b and c are scalars. Find T(au + bv + cw). Now that you know...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W by T(x1, x2) = (x1 − x2, x1, x2). Find the matrix representation of T using the standard bases in both V and W 11 Let T :R3 →R3 be a linear transformation such that T(1, 0, 0) = (2, 4, −1), T(0, 1, 0) = (1, 3, −2), T(0, 0, 1) = (0, −2, 2). Compute T(−2, 4, −1).
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
A2. Let v be a fixed vector in an inner product space V. Let W be...
A2. Let v be a fixed vector in an inner product space V. Let W be the subset of V consisting of all vectors in V that are orthogonal to v. In set language, W = { w LaTeX: \in ∈V: <w, v> = 0}. Show that W is a subspace of V. Then, if V = R3, v = (1, 1, 1), and the inner product is the usual dot product, find a basis for W.
1) Find a basis for the column space of A= 2 -4 0 2 1 -1...
1) Find a basis for the column space of A= 2 -4 0 2 1 -1 2 1 2 3 1 -2 1 4 4 2) Are the following sets vector subspaces of R3? a) W = {(a,b,|a|) ∈ R3 | a,b ∈ R} b) V = {(x,y,z) ∈ R3 | x+y+z =0}
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT