Question

A2. Let v be a fixed vector in an inner product space V. Let W be...

A2. Let v be a fixed vector in an inner product space V. Let W be the subset of V consisting of all vectors in V that are orthogonal to v. In set language, W = { w LaTeX: \in
∈V: <w, v> = 0}. Show that W is a subspace of V. Then, if V = R3, v = (1, 1, 1), and the inner product is the usual dot product, find a basis for W.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V be an inner product space. Prove that if w⃗ is orthogonal to each of...
Let V be an inner product space. Prove that if w⃗ is orthogonal to each of the vectors in the set S = {⃗v1, ⃗v2, . . . , ⃗vm}, then w⃗ is also orthogonal to each of the vectors in the subspace W = SpanS of V .
Let W be a subspace of a f.d. inner product space V and let PW be...
Let W be a subspace of a f.d. inner product space V and let PW be the orthogonal projection of V onto W. Show that the characteristic polynomial of PW is (t-1)^dimW t^(dimv-dimw)
1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T...
1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T and v =[ 3 2 2]T. (a) Find its orthogonal complement space V┴ ; (b) Find the dimension of space W = V+ V┴; (c) Find the angle θ between u and v and also the angle β between u and normalized x with respect to its 2-norm. (d) Considering v’ = av, a is a scaler, show the angle θ’ between u and...
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let W be an inner product space and v1,...,vn a basis of V. Show that〈S, T...
Let W be an inner product space and v1,...,vn a basis of V. Show that〈S, T 〉 = 〈Sv1, T v1〉 + . . . + 〈Svn, T vn〉 for S,T ∈ L(V,W) is an inner product on L(V,W). Let S ∈ L(R^2) be given by S(x1, x2) = (x1 + x2, x2) and let I ∈ L(R^2) be the identity operator. Using the inner product defined in problem 1 for the standard basis and the dot product, compute 〈S,...
Let U and V be subspaces of the vector space W . Recall that U ∩...
Let U and V be subspaces of the vector space W . Recall that U ∩ V is the set of all vectors ⃗v in W that are in both of U or V , and that U ∪ V is the set of all vectors ⃗v in W that are in at least one of U or V i: Prove: U ∩V is a subspace of W. ii: Consider the statement: “U ∪ V is a subspace of W...
Question 1:  Is there a vector space that can not be an inner product space? Justify your...
Question 1:  Is there a vector space that can not be an inner product space? Justify your answer. Part 2: Suppose that u and v are two non-orthogonal vectors in an inner product space V,< , >. Question 2: Can we modify the inner product < , > to a new inner product so that the two vectors become orthogonal? Justify your answer.
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4...
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4 (a) Let w  =  (0, 6, 4, 1). Find ||w||. (b) Let W be the subspace spanned by the vectors u1  =  (0, 0, 2, 1), and   u2  =  (3, 0, −2, 1). Use the Gram-Schmidt process to transform the basis {u1, u2} into an orthonormal basis {v1, v2}. Enter the components of the vector v2 into the answer box below, separated with commas.
Suppose 〈 , 〉 is an inner product on a vector space V . Show that...
Suppose 〈 , 〉 is an inner product on a vector space V . Show that no vectors u and v exist such that ∥u∥ = 1, ∥v∥ = 2, and 〈u, v〉 = −3.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT