Question

Let B = {(1, 3), (?2, ?2)} and B' = {(?12, 0), (?4, 4)} be bases...

Let B = {(1, 3), (?2, ?2)} and B' = {(?12, 0), (?4, 4)} be bases for R2, and

let A =

3 2
0 4

be the matrix for T: R2 ? R2 relative to B.

(a) Find the transition matrix P from B' to B. P =

(b) Use the matrices P and A to find [v]B and [T(v)]B, where [v]B' = [1 ?5]T. [v]B = [T(v)]B =

(c) Find P?1 and A' (the matrix for T relative to B'). P?1 = A' =

(d) Find [T(v)]B' two ways.

[T(v)]B' = P?1[T(v)]B=

[T(v)]B' = A'[v]B'=

Homework Answers

Answer #1

(a). Let M = [B|B’] =

1

-2

-12

-4

3

-2

0

4

The RREF of M is

1

0

6

4

0

1

9

4

Hence, the transition matrix from B' to B is P =

6

4

9

4

(b). [v]B = P[v]B’ = (-14,-11)T. Then, [T(v)]B = A[v]B = (-64,-44)T.

(c ). Let N =

6

4

1

0

9

4

0

1

The RREF of N is

1

0

-1/3

1/3

0

1

¾

-1/2

Therefore, P-1 =

-1/3

1/3

¾

-1/2

Also, A’ = AP-1 =

½

0

3

-2

(d).          [T(v)]B’ = P-1[T(v)]B= (20/3,-26)T

                 

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let B = {(1, 2), (−1, −1)} and B' = {(−4, 1), (0, 2)} be bases...
Let B = {(1, 2), (−1, −1)} and B' = {(−4, 1), (0, 2)} be bases for R2, and let A = −1 2 1 0 be the matrix for T: R2 → R2 relative to B. (a) Find the transition matrix P from B' to B. P = (b) Use the matrices P and A to find [v]B and [T(v)]B , where [v]B' = [−3 1]T. [v]B = [T(v)]B = (c) Find P inverse−1 and A' (the matrix for...
Let B = {u1,u2} where u1 = 1 0and u2 = 0 1 and B' ={...
Let B = {u1,u2} where u1 = 1 0and u2 = 0 1 and B' ={ v1 v2] where v1= 2 1 v2= -3 4 be bases for R2 find 1.the transition matrix from B′ to B 2. the transition matrix from B to B′ 3.[z]B if z = (3, −5) 4.[z]B′ by using a transition matrix 5. [z]B′ directly, that is, do not use a transition matrix.
Let B={(1,1,1),(4,−2,0),(0,−3,2)} and B′={(1,0,0),(1,−2,1),(1,3,−1)} be two ordered bases for the vector space V=R3. Find the transition...
Let B={(1,1,1),(4,−2,0),(0,−3,2)} and B′={(1,0,0),(1,−2,1),(1,3,−1)} be two ordered bases for the vector space V=R3. Find the transition matrix from B to B′.
Let T: P3→P3 be given by T(p(x)) =p(2x) and consider the bases B={1, x, x2, x3}and...
Let T: P3→P3 be given by T(p(x)) =p(2x) and consider the bases B={1, x, x2, x3}and B′={1, x−1,(x−1)2,(x−1)3} of P3. (a) Find the matrix of T relative to B. (b) Find the change of basis matrix from B′ to B.
Let V = W = R2. Choose the basis B = {x1, x2} of V ,...
Let V = W = R2. Choose the basis B = {x1, x2} of V , where x1 = (2, 3), x2 = (4,−5) and choose the basis D = {y1,y2} of W, where y1 = (1,1), y2 = (−3,4). Find the matrix of the identity linear mapping I : V → W with respect to these bases.
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
Let A = [1 5 ; 3 1 ; 2 -4] and b = [1 ;...
Let A = [1 5 ; 3 1 ; 2 -4] and b = [1 ; 0 ; 3] (where semicolons represent a new row) Is equation Ax=b consistent? Let b(hat) be the orthogonal projection of b onto Col(A). Find b(hat). Let x(hat) the least square solution of Ax=b. Use the formula x(hat) = (A^(T)A)^(−1) A^(T)b to compute x(hat). (A^(T) is A transpose) Verify that x(hat) is the solution of Ax=b(hat).
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W by T(x1, x2) = (x1 − x2, x1, x2). Find the matrix representation of T using the standard bases in both V and W 11 Let T :R3 →R3 be a linear transformation such that T(1, 0, 0) = (2, 4, −1), T(0, 1, 0) = (1, 3, −2), T(0, 0, 1) = (0, −2, 2). Compute T(−2, 4, −1).
Let A = (1 0 2 -1 2 4) and J = (1 0 0 0...
Let A = (1 0 2 -1 2 4) and J = (1 0 0 0 1 0)    A and J are 3*2 matrices. 1. Find elementary matrices E1,...,Ep,G1,...,Gq so that E1···EpAG1···Gq = J 2. Find elementary matrices E'1,...,E'p,G'1,...,G'q so that E'1···E'pJG'1···G'q = A
P= 1      0    0     0 .2     .3      .1      .4 .1      .2      .3   
P= 1      0    0     0 .2     .3      .1      .4 .1      .2      .3     .4 0       0      0        1 (a) Identify any absorbing state(s). (b) Rewrite P in the form: I      O R     Q (c)Find the Fundamental Matrix, F. (d)Find FR