Question

Consider the ordered bases B={[8,9]} and C={[-2,0],[-3,3]} for the vector space R^2. A. find the matrix...

Consider the ordered bases B={[8,9]} and C={[-2,0],[-3,3]} for the vector space R^2.
A. find the matrix from C to B.
B.Find the coordinates of u=[2,1] in the ordered basis B.
C.Find the coordinates of v in the ordered basis B if the coordinate vector of v in C =[-1,2].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following two ordered bases of R^2: B={〈1,−1〉,〈2,−1〉} C={〈1,1〉,〈1,2〉}. Find the change of coordinates matrix...
Consider the following two ordered bases of R^2: B={〈1,−1〉,〈2,−1〉} C={〈1,1〉,〈1,2〉}. Find the change of coordinates matrix from the basis B to the basis C. PC←B=? Find the change of coordinates matrix from the basis C to the basis B. PB←C=?
Let B={(1,1,1),(4,−2,0),(0,−3,2)} and B′={(1,0,0),(1,−2,1),(1,3,−1)} be two ordered bases for the vector space V=R3. Find the transition...
Let B={(1,1,1),(4,−2,0),(0,−3,2)} and B′={(1,0,0),(1,−2,1),(1,3,−1)} be two ordered bases for the vector space V=R3. Find the transition matrix from B to B′.
Let V be a vector space with ordered basis B = (b1, . . . ,...
Let V be a vector space with ordered basis B = (b1, . . . , bn). Does the basis having n elements imply that V is the coordinate space R^n?
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose...
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose that T is a linear transformation from V to itself and T(u) = u + v, T(v) = u, T(w) = v. 1. Find the matrix of T relative to the ordered basis B. 2. A typical element of V looks like au + bv + cw, where a, b and c are scalars. Find T(au + bv + cw). Now that you know...
In R^2, let u = (1,-1) and v = (1,2). a) Show that (u,v) form a...
In R^2, let u = (1,-1) and v = (1,2). a) Show that (u,v) form a basis. Call it B. b) If we call x the coordinates along the canonical basis and y the coordinates along the ordered B basis, find the matrix A such that y = Ax.
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
a. Find an orthonormal basis for R 3 containing the vector (2, 2, 1). b. Let...
a. Find an orthonormal basis for R 3 containing the vector (2, 2, 1). b. Let V be a 3-dimensional inner product space and S = {v1, v2, v3} be an orthonormal set in V. Explain whether the set S can be a basis for V .
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form lambda?I.   [[4.5,0][0,4.5]]  [[5.5,0][0,5.5]]  [[4,0][0,4]]  [[3.5,0][0,3.5]]  [[5,0][0,5]]  [[1.5,0][0,1.5]] 2. Find the orthogonal projection of the matrix [[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace 0.   [[-1,3][3,1]]  [[1.5,1][1,-1.5]]  [[0,4][4,0]]  [[3,3.5][3.5,-3]]  [[0,1.5][1.5,0]]  [[-2,1.5][1.5,2]]  [[0.5,4.5][4.5,-0.5]]  [[-1,6][6,1]]  [[0,3.5][3.5,0]]  [[-1.5,3.5][3.5,1.5]] 3. Find the orthogonal projection of the matrix [[1,5][1,2]] onto the space of anti-symmetric 2x2 matrices.   [[0,-1] [1,0]]  [[0,2] [-2,0]]  [[0,-1.5] [1.5,0]]  [[0,2.5] [-2.5,0]]  [[0,0] [0,0]]  [[0,-0.5] [0.5,0]]  [[0,1] [-1,0]] [[0,1.5] [-1.5,0]]  [[0,-2.5] [2.5,0]]  [[0,0.5] [-0.5,0]] 4. Let p be the orthogonal projection of u=[40,-9,91]T onto the...
In R^3 consider the following two bases B= { v1=(2,2,-3), v2=(2,2,0), v3=(1,2,4)} and B' = {...
In R^3 consider the following two bases B= { v1=(2,2,-3), v2=(2,2,0), v3=(1,2,4)} and B' = { w1= (1,0,2), w2=(2,1,2), w3=(0,2, -2) } a) Find the matrix associated to the change of basis from B to B'. b) If VB= (-1,3,0), then find VB'
True or False? No reasons needed. (e) Suppose β and γ are bases of F n...
True or False? No reasons needed. (e) Suppose β and γ are bases of F n and F m, respectively. Every m × n matrix A is equal to [T] γ β for some linear transformation T: F n → F m. (f) Recall that P(R) is the vector space of all polynomials with coefficients in R. If a linear transformation T: P(R) → P(R) is one-to-one, then T is also onto. (g) The vector spaces R 5 and P4(R)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT