Question

Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose...

Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose that T is a linear transformation from V to itself and T(u) = u + v, T(v) = u, T(w) = v.

1. Find the matrix of T relative to the ordered basis B.

2. A typical element of V looks like au + bv + cw, where a, b and c are scalars. Find T(au + bv + cw). Now that you know what the image of an arbitrary element of V is, write down a basis for the kernel of T. (Your basis elements will of course be expressed in terms of u, v and w.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that V is a vector space with basis {u, v, w}. Suppose that T is...
Suppose that V is a vector space with basis {u, v, w}. Suppose that T is a linear transformation from V to W and suppose also that {T(u), T(v), T(w)} is a basis for W. Prove from the definitions that T is both 1-1 and onto.
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
Let V be a vector space with ordered basis B = (b1, . . . ,...
Let V be a vector space with ordered basis B = (b1, . . . , bn). Does the basis having n elements imply that V is the coordinate space R^n?
Let U and W be subspaces of a nite dimensional vector space V such that U...
Let U and W be subspaces of a nite dimensional vector space V such that U ∩ W = {~0}. Dene their sum U + W := {u + w | u ∈ U, w ∈ W}. (1) Prove that U + W is a subspace of V . (2) Let U = {u1, . . . , ur} and W = {w1, . . . , ws} be bases of U and W respectively. Prove that U ∪ W...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" the Definiton of isomorphic:  Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" The Definition of dimenion: the...
Let u = (1,−3,3,9) and v = (2,1,0,−2). Find scalars a and b so that au...
Let u = (1,−3,3,9) and v = (2,1,0,−2). Find scalars a and b so that au + bv = (−3,−5,3,10)
(3) Let V be a finite dimensional vector space, and let T: V® V be a...
(3) Let V be a finite dimensional vector space, and let T: V® V be a linear transformation such that rk(T) = rk(T2). a) Show that ker(T) = ker(T2). b) Show that 0 is the only vector that lies in both the null space of T, and the range space of T
Let V and W be finite-dimensional vector spaces over F, and let φ : V →...
Let V and W be finite-dimensional vector spaces over F, and let φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V ) = n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn}, for some vectors vk+1, . . . , vn ∈ V . Prove that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that U is a subspace of V, and let T(U) be the set of all vectors w in W such that T(v) = w for some v in V. Show that T(U) is a subspace of W. b. Suppose that dimension of U is n. Show that the dimension of T(U) is less than or equal to n.
Let V be Rn with a basis B={b1,...,bn}; let W be Rn with the standard basis,...
Let V be Rn with a basis B={b1,...,bn}; let W be Rn with the standard basis, denoted here by epsilon; and consider the identity transformation I : V --> W, where I(x) = x. Find the matrix for I relative to B and epsilon. What was this matrix called in Section 4.4?