Question

7) Let B be a matrix with a repeated zero eigenvalues. Then show that B2 =...

7) Let B be a matrix with a repeated zero eigenvalues. Then show that B2 = 0 (the 2 × 2 zero matrix). Use this to show: if A has a repeated eigenvalue λ0, then (A − λ0I) 2 = 0. (Hint: Use the fact that Bv = 0 for some nonzero vector v)

Homework Answers

Answer #1

1. Let B =

a

b

c

d

where a,b,c,d are arbitrary real numbers. The characteristic polynomial of B is det(B-ʎI2) or, (a-ʎ)(d-ʎ) -bc or, ʎ2-(a+d)+(ad-bc) .

Now, if 0 is a repeated eigenvalue of B, then its characteristic polynomial is (ʎ-0)(ʎ-0)= ʎ2 so that a+d = 0 or, d = -a . Also, ad-bc = 0 or, a(-a)- bc = 0 or, bc = -a2 so that c = - a2/b . Then B =

a

b

- a2/b

-a

so that B2 =

0

0

0

0

Thus, B is the 2 × 2 zero matrix.

2. Now, let A be a 2 × 2 zero matrix with a repeated eigenvalue λ0. Then there is a non-zero vector v (say) such that Av = λ0v. Then (A − λ0I2)v =0 = 0.v . This means that 0 is a repeated eigenvalue of A − λ0I2. Therefore, as per part 1 above, ( A − λ0I2)2 = 0.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
Let A be an symmetric matrix. Assume that A has two different eigenvalues ?1 ?= ?2....
Let A be an symmetric matrix. Assume that A has two different eigenvalues ?1 ?= ?2. Let v1 be a ?1-eigenvector, and v2 be and ?2-eigenvector. Show that v1 ? v2. (Hint: v1T Av2 = v2T Av1.)
For these two problems, use the definition of eigenvalues. (a) An n × n matrix is...
For these two problems, use the definition of eigenvalues. (a) An n × n matrix is said to be nilpotent if Ak = O for some positive integer k. Show that all eigenvalues of a nilpotent matrix are 0. (b) An n × n matrix is said to be idempotent if A2 = A. Show that all eigenvalues of a idempotent matrix are 0, or 1.
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be...
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be in R 17 , c be in R 20, and 0 be the vector with all zero entries. Show that each of the following statements implies the other. (a) Bx = 0 has only the trivial solution x = 0 n R 17, then (b) If Bx = c has a solution for some vector c in R 20, then the solution is unique.
Let A be a square matrix with an inverse A-1. Show that if Ab = 0...
Let A be a square matrix with an inverse A-1. Show that if Ab = 0 then b must be the zero vector.
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix,...
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix, and also have the same eigenvectors (but not necessarily the same eigenvalues), then  AB=BA.
Let A be a (n × n) matrix. Show that A and AT have the same...
Let A be a (n × n) matrix. Show that A and AT have the same characteristic polynomials (and therefore the same eigenvalues). Hint: For any (n×n) matrix B, we have det(BT) = det(B). Remark: Note that, however, it is generally not the case that A and AT have the same eigenvectors!
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β...
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β ≠ 0. It was shown in class that the corresponding eigenvectors will be complex. Suppose that a + i b is an eigenvector for α + i β , for some real vectors a , b . Show that a − i b is an eigenvector corresponding to α − i β . Hint: properties of the complex conjugate may be useful. Please show...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT