Question

Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β...

Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β ≠ 0. It was shown in class that the corresponding eigenvectors will be complex. Suppose that a + i b is an eigenvector for α + i β , for some real vectors a , b . Show that a − i b is an eigenvector corresponding to α − i β . Hint: properties of the complex conjugate may be useful. Please show all work, Thanks

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose A is a 2x2 matrix whose eigenvalues all have negative real parts. For the system...
Suppose A is a 2x2 matrix whose eigenvalues all have negative real parts. For the system x 0 = Ax, is the origin stable or unstable?
5. Suppose A is an n × n matrix, whose entries are all real numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that has n distinct real eigenvalues. Explain why R n has a basis consisting of eigenvectors of A. Hint: use the “eigenspaces are independent” lemma stated in class. 6. Unlike the previous problem, let A be a 2 × 2 matrix, whose entries are all real numbers, with only 1 eigenvalue λ. (Note: λ must be real, but don’t worry about why this is true)....
Let X ∼ Beta(α, β). (a) Show that EX 2 = (α + 1)α (α +...
Let X ∼ Beta(α, β). (a) Show that EX 2 = (α + 1)α (α + β + 1)(α + β) . (b) Use the fact that EX = α/(α + β) and your answer to the previous part to show that Var X = αβ (α + β) 2 (α + β + 1). (c) Suppose X is the proportion of free-throws made over the lifetime of a randomly sampled kid, and assume that X ∼ Beta(2, 8) ....
1. Given β = XT 1×nAn×nXn×1, show that the gradient of β with respect to X...
1. Given β = XT 1×nAn×nXn×1, show that the gradient of β with respect to X has the following form: ∇β = X T (A + A T ). Also, simplify the above result when A is symmetric. (Hint: β can be written as Pn j=1 Pn i=1 aijxixj ). 2. In this problem, we consider a probabilistic view of linear regression y (i) = θ T x (i)+ (i) , i = 1, . . . , n, which...
When using its associated dynamic-programming recurrence to compute the entries of wac(i, j), how many times...
When using its associated dynamic-programming recurrence to compute the entries of wac(i, j), how many times is entry wac(25, 32) used in order to compute other entries of wac that represent larger subproblems, assuming n = 76 keys? Explain and show work. 5b. The general form of a divide-and-conquer recurrence may be expressed as T(n) = Xr i=1 T(n/bi) + f(n), for some integer r ≥ 1 and real constants bi > 1, i = 1, . . . ,...
Suppose the following data were obtained from the admissions office of a 2-year junior college. Of...
Suppose the following data were obtained from the admissions office of a 2-year junior college. Of the first-year class (F), 75% became sophomores (S) the next year and 25% dropped out (D). Of those who were sophomores during a particular year, 90% graduated (G) by the following year and 10% dropped out. (a) [8 pts] Set up a Markov chain transition matrix with states D, F, G, and S that describes the scenario. Hint: Although not explicitly stated, you can...
1) Describe an example of each of the following that may be found of your kitchen:...
1) Describe an example of each of the following that may be found of your kitchen: Explain how your choice falls into this category, and if there is a chemical name or symbol for it, provide that as well. Provide a photo of your example with your ID card in it. a) a compound b) a heterogeneous mixture c) an element (symbol) Moving to the Caves… Lechuguilla Caves specifically. Check out this picture of crystals of gypsum left behind in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT