Question

Let A be an symmetric matrix. Assume that A has two different eigenvalues ?1 ?= ?2....

Let A be an symmetric matrix. Assume that A has two different eigenvalues ?1 ?= ?2. Let v1 be a ?1-eigenvector, and v2 be and ?2-eigenvector. Show that v1 ? v2. (Hint: v1T Av2 = v2T Av1.)

Homework Answers

Answer #1

For any real matrix A and any vectors and , we have

Now assume that A is symmetric, and and are eigenvectors of A corresponding to distinct eigenvalues and . Then

Therefore, . Since, , then , i.e.,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7) Let B be a matrix with a repeated zero eigenvalues. Then show that B2 =...
7) Let B be a matrix with a repeated zero eigenvalues. Then show that B2 = 0 (the 2 × 2 zero matrix). Use this to show: if A has a repeated eigenvalue λ0, then (A − λ0I) 2 = 0. (Hint: Use the fact that Bv = 0 for some nonzero vector v)
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
3.35 Show that if A is an m x m symmetric matrix with its eigenvalues equal...
3.35 Show that if A is an m x m symmetric matrix with its eigenvalues equal to its diagonal elements, then A must be a diagonal matrix.
Given Eigenvalue 3, -2. Respective Eigenvector V1 = [1 1], V2= [1 -1]. Find the matrix...
Given Eigenvalue 3, -2. Respective Eigenvector V1 = [1 1], V2= [1 -1]. Find the matrix A
Suppose A is an orthogonal matrix. Show that |λ| = 1 for all eigen- values λ....
Suppose A is an orthogonal matrix. Show that |λ| = 1 for all eigen- values λ. (Hint: start off with an eigenvector and dot-product it with itself. Then cleverly insert A and At into the dot-product.) b) Suppose P is an orthogonal projection. Show that the only possible eigenvalues are 0 and 1. (Hint: start off with an eigenvector and write down the definition. Then apply P to both sides.) An n×n matrix B is symmetric if B = Bt....
find the eigenvalues of the following matrix. then find the corresponding eigenvector(s) of one ofthose eigenvalues...
find the eigenvalues of the following matrix. then find the corresponding eigenvector(s) of one ofthose eigenvalues (pick your favorite). 1 -2 0 -1 1 -1 0 -2 1
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β...
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β ≠ 0. It was shown in class that the corresponding eigenvectors will be complex. Suppose that a + i b is an eigenvector for α + i β , for some real vectors a , b . Show that a − i b is an eigenvector corresponding to α − i β . Hint: properties of the complex conjugate may be useful. Please show...
For these two problems, use the definition of eigenvalues. (a) An n × n matrix is...
For these two problems, use the definition of eigenvalues. (a) An n × n matrix is said to be nilpotent if Ak = O for some positive integer k. Show that all eigenvalues of a nilpotent matrix are 0. (b) An n × n matrix is said to be idempotent if A2 = A. Show that all eigenvalues of a idempotent matrix are 0, or 1.
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M....
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M. 1. Show that the diagonal of an anti-symmetric matrix are zero 2. suppose that A,B are symmetric n × n-matrices. Prove that AB is symmetric if AB = BA. 3. Let A be any n×n-matrix. Prove that A+A^t is symmetric and A - A^t antisymmetric. 4. Prove that every n × n-matrix can be written as the sum of a symmetric and anti-symmetric matrix.