Question

For these two problems, use the definition of eigenvalues. (a) An n × n matrix is...

For these two problems, use the definition of eigenvalues.

(a) An n × n matrix is said to be nilpotent if Ak = O for some positive integer k. Show that all eigenvalues of a nilpotent matrix are 0.

(b) An n × n matrix is said to be idempotent if A2 = A. Show that all eigenvalues of a idempotent matrix are 0, or 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A square matrix is nilpotent if there is a positive integer k such that Ak =...
A square matrix is nilpotent if there is a positive integer k such that Ak = 0, the all zeros matrix. Prove that if A is nilpotent, then A is NOT invertible
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
Prove: If A is an n × n symmetric matrix all of whose eigenvalues are nonnegative,...
Prove: If A is an n × n symmetric matrix all of whose eigenvalues are nonnegative, then xTAx ≥ 0 for all nonzero x in the vector space Rn.
7) Let B be a matrix with a repeated zero eigenvalues. Then show that B2 =...
7) Let B be a matrix with a repeated zero eigenvalues. Then show that B2 = 0 (the 2 × 2 zero matrix). Use this to show: if A has a repeated eigenvalue λ0, then (A − λ0I) 2 = 0. (Hint: Use the fact that Bv = 0 for some nonzero vector v)
Let A be a 2 × 2 matrix satisfying A^k = 0 for some positive integer...
Let A be a 2 × 2 matrix satisfying A^k = 0 for some positive integer k. Show that A^2 = 0.
For all problems on this page, use the following setup: Let N be a positive integer...
For all problems on this page, use the following setup: Let N be a positive integer random variable with PMF of the form pN(n)=1/2⋅n⋅2^(−n),n=1,2,…. Once we see the numerical value of N, we then draw a random variable K whose (conditional) PMF is uniform on the set {1,2,…,2n}. Write down an expression for the joint PMF pN,K(n,k). For n=1,2,… and k=1,2,…,2n: pN,K(n,k)=
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β...
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β ≠ 0. It was shown in class that the corresponding eigenvectors will be complex. Suppose that a + i b is an eigenvector for α + i β , for some real vectors a , b . Show that a − i b is an eigenvector corresponding to α − i β . Hint: properties of the complex conjugate may be useful. Please show...
Suppose A is an orthogonal matrix. Show that |λ| = 1 for all eigen- values λ....
Suppose A is an orthogonal matrix. Show that |λ| = 1 for all eigen- values λ. (Hint: start off with an eigenvector and dot-product it with itself. Then cleverly insert A and At into the dot-product.) b) Suppose P is an orthogonal projection. Show that the only possible eigenvalues are 0 and 1. (Hint: start off with an eigenvector and write down the definition. Then apply P to both sides.) An n×n matrix B is symmetric if B = Bt....
Problem 3.2 Let H ∈ Rn×n be symmetric and idempotent, hence a projection matrix. Let x...
Problem 3.2 Let H ∈ Rn×n be symmetric and idempotent, hence a projection matrix. Let x ∼ N(0,In). (a) Let σ > 0 be a positive number. Find the distribution of σx. (b) Let u = Hx and v = (I −H)x and find the joint distribution of (u,v). 1 (c) Someone claims that u and v are independent. Is that true? (d) Let µ ∈ Im(H). Show that Hµ = µ. (e) Assume that 1 ∈ Im(H) and find...