Question

f(x, y) = ln x + x2 + y2 ;    fx(5, −3)

f(x, y) = ln

x +

x2 + y2

;    fx(5, −3)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2)...
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2) b) Determine fx(x|y=y2) Ans: 1d(x-x2) c) Determine fy(y|x=x1) Ans: (1/3)d(y-y1)+(2/3)d(y-y3) d) Determine fx(y|x=x2) Ans: (3/9)d(y-y1)+(1/9)d(y-y2)+(5/9)d(y-y3) 4.4-JG2 Given fx,y(x,y)=2(1-xy) for 0 a) fx(x|y=0.5) (Point Conditioning) Ans: (4/3)(1-x/2) b) fx(x|0.5
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 7)j + zk. Find the...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 7)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 6 that lies above the plane z = 5 and is oriented upward.
Consider the following five utility functions. G(x,y) = x2 + 3 y2 H(x,y) =ln(x) + ln(2y)...
Consider the following five utility functions. G(x,y) = x2 + 3 y2 H(x,y) =ln(x) + ln(2y) L(x,y) = x1/2 + y1/2 U(x,y) =x y W(x,y) = (4x+2y)2 Z(x,y) = min(3x ,y) In the case of which function or functions can the Method of Lagrange be used to find the complete solution to the consumer's utility maximization problem? a. H b. U c. G d. Z e. L f. W g. None.
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 8)j + zk. Find the...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 8)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 6 that lies above the plane z = 5 and is oriented upward.    S F · dS =  
(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B....
(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B. ∂f∂y=fy=∂f∂y=fy= C. ∂2f∂x2=fxx=∂2f∂x2=fxx= D. ∂2f∂y2=fyy=∂2f∂y2=fyy= E. ∂2f∂x∂y=fyx=∂2f∂x∂y=fyx= F. ∂2f∂y∂x=fxy=∂2f∂y∂x=fxy=
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 9)j + zk. Find the...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 9)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 7 that lies above the plane z = 3 and is oriented upward.
Let joint CDF Fx,y (x,y) = сxy(x2 + y2) for 0 ≤ x ≤ 1, 0...
Let joint CDF Fx,y (x,y) = сxy(x2 + y2) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Find а) constant с. b) Fx|y (x|y) for x = 0.5, y = 0.5.  
. Let f(x, y) = x2 y(2 − x + y2 )5 − 4x2 (1 +...
. Let f(x, y) = x2 y(2 − x + y2 )5 − 4x2 (1 + x + y)7 + x3 y2 (1 − 3x − y)8 . Find the coefficient of x5y3 in the expansion of f(x, y).
Find the directional derivative of the function f(x,y,z)=ln(x2+y2−1)+y+6z at the point (1,1,0) in the direction of...
Find the directional derivative of the function f(x,y,z)=ln(x2+y2−1)+y+6z at the point (1,1,0) in the direction of the vector v→=i→−2j→+2k→
1) If z=Ln(x2+y2 ) , x=e-1 ,y=et the total derivative dz/dt will become-------------- Select one: A....
1) If z=Ln(x2+y2 ) , x=e-1 ,y=et the total derivative dz/dt will become-------------- Select one: A. dz/dt=2x/x2+ y2 . (-e-t) - 2x/(x2+ y2 ). et B. dz/dt=2x/x2+ y2 . (-e-t)+2x/(x2+ y2 ). e-t C. dz/dt=2x/x2+ y2 . (-e-t)+2x/(x2+ y2 ). et D. dz/dt=2x/x2+ y2 . (e-t)+2x/(x2+ y2 ). et 2) The second order partial derivative with respect to x of f(x,y)=cos(x)+xyexy+xsin(y) is------------- Select one: A. ∂/∂x(∂f/∂x) = 2y2exy + xy3exy B. ∂/∂x(∂f/∂x) = −cos(x) + 2y2exy + xy3exy + sin(y)...